從天空降落到地面上的雨水,未經(jīng)蒸發(fā)、滲透、流失而在平面上積聚的水層深度,我們稱為降水量(以毫米為單位),它可以直觀地表示降雨的多少,目前,測(cè)定降雨量常用的儀器包括雨量筒和量杯,雨量筒是內(nèi)徑為20厘米的圓柱形容器,量杯是內(nèi)徑為4厘米的圓柱形容器,為了測(cè)量某次降雨量的大小,在雨前將雨量筒置于室外承接雨水,雨后將水倒入量杯中,測(cè)得杯中的垂直高度 為10厘米,則這次降雨量為
 
毫米.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:計(jì)算題,應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)這次降雨量為x毫米,則由體積相等可得π•(
200
2
2•x=π•(
40
2
)2
•100,從而求解即可.
解答: 解:設(shè)這次降雨量為x毫米,
則由體積相等可得,
π•(
200
2
2•x=π•(
40
2
)2
•100,
解得,x=4.
故答案為:4.
點(diǎn)評(píng):本題考查了學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,內(nèi)切圓⊙I與邊BC,CA,AB分別相切于點(diǎn)D,E,F(xiàn).
(1)試確定四邊形CDIE的形狀,并證明你的結(jié)論;
(2)如果∠B=30°,內(nèi)切圓⊙I的半徑是5,求斜邊AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程
|x2-1|
x-1
+2-
k
x
=0有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=0,an+1=an+2
an+1
+1,n∈N*
(Ⅰ)證明:數(shù)列{
an+1
}
是等差數(shù)列;
(Ⅱ)設(shè)an=(
bn
3n
)2
-1,求正項(xiàng)數(shù)列{bn}的前n和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)在定義在(-∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=3x+2②f(x)=x2③f(x)=2x④f(x)=
1
x
⑤f(x)=lnx
其中是“保等比數(shù)列函數(shù)”的是
 
  (填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一工廠生產(chǎn)某原料的生產(chǎn)成本y(萬(wàn)元)為產(chǎn)量x(千噸)之間的關(guān)系為y=x+
400
x+1
,則生產(chǎn)成本最少時(shí)該工廠的產(chǎn)量x為( 。
A、17千噸B、18千噸
C、19千噸D、20千噸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,a1=
1
2
,且滿足2Sn+1=4Sn+1(n∈N*),則數(shù)列{an}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=3x+3.
(1)求點(diǎn)P(5,3)關(guān)于直線l的對(duì)稱點(diǎn)P′的坐標(biāo);
(2)求直線l1:x-y-2=0關(guān)于直線l的對(duì)稱直線l2的方程;
(3)已知點(diǎn)M(2,6),試在直線l上求一點(diǎn)N使得|NP|+|NM|的值最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和Sn滿足S3=6,S5=15.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
1
a2n-1a2n+1
}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案