6.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+(3-a)x+b在(0,+∞)上有3個單調區(qū)間,求實數(shù)a的取值范圍.

分析 求出函數(shù)的導數(shù),得到關于a的不等式組,解出即可.

解答 解:∵f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+(3-a)x+b,
∴f′(x)=x2-ax+(3-a),
若函數(shù)f(x)在(0,+∞)上有3個單調區(qū)間,
則$\left\{\begin{array}{l}{△{=a}^{2}-4(3-a)>0}\\{a>0}\\{3-a>0}\end{array}\right.$,
解得:2($\sqrt{2}$-1)<a<3.

點評 本題考查了導數(shù)的應用以及二次函數(shù)的性質,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}a-|{x+1}|,x≤1\\{({x-a})^2},x>1\end{array}$,函數(shù)g(x)=2-f(x),若函數(shù)y=f(x)-g(x)恰有4個零點,則實數(shù)a的取值范圍是( 。
A.1<a≤3B.a>2C.1<a<2D.2<a≤3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖所示,正方形ABCD的邊長為2,E,F(xiàn)分別為AB,AD的中點,G為線段CE上的一個動點,設$\frac{CG}{CE}$=x,S△GDF=y,則函數(shù)y=f(x)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知數(shù)列{an}滿足a1=10,an+1-an=2n(n∈N*),則$\frac{a_n}{n}$的最小值為$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設函數(shù)f(x)=ex,g(x)=kx+1.
(I)求函數(shù)y=f(x)-(x+1)的最小值;
(II)證明:當k>1時,存在x0>0,使對于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在實數(shù)m使對任意x∈(0,m)都有|f(x)-g(x)|>x成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.高三畢業(yè)時,甲、乙、丙、丁四位同學站成一排合影留念,則甲乙相鄰的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,正四面體ABCD的頂點A,B,C分別在兩兩垂直的三條射線Ox,Oy,Oz上,則在下列命題中,錯誤的為(  )
A.O-ABC是正三棱錐(底面為正三角形,頂點在底面的投影為底面的中心)
B.直線OB∥平面ACD
C.OD⊥平面ABC
D.直線CD與平面ABC所成的角的正弦值為$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.鄭州市的機動車牌照號碼自主選號統(tǒng)一由2個英文字母與3個數(shù)字組成,若要求2個字母互不相同,這種牌照的號碼最多有(  )個.
A.A${\;}_{26}^{2}$103C${\;}_{5}^{2}$B.A${\;}_{26}^{2}$A${\;}_{10}^{3}$
C.(C${\;}_{26}^{1}$)2A${\;}_{10}^{3}$C${\;}_{5}^{2}$D.A${\;}_{26}^{2}$103

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=sinx-ax.
(Ⅰ)對于x∈(0,1),f(x)>0恒成立,求實數(shù)a的取值范圍;
(Ⅱ)當a=1時,令h(x)=f(x)-sinx+lnx+1,求h(x)的最大值;
(Ⅲ)求證:$ln({n+1})<1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n-1}+\frac{1}{n}({n∈{N^*}})$.

查看答案和解析>>

同步練習冊答案