15.鄭州市的機(jī)動(dòng)車牌照號(hào)碼自主選號(hào)統(tǒng)一由2個(gè)英文字母與3個(gè)數(shù)字組成,若要求2個(gè)字母互不相同,這種牌照的號(hào)碼最多有( 。﹤(gè).
A.A${\;}_{26}^{2}$103C${\;}_{5}^{2}$B.A${\;}_{26}^{2}$A${\;}_{10}^{3}$
C.(C${\;}_{26}^{1}$)2A${\;}_{10}^{3}$C${\;}_{5}^{2}$D.A${\;}_{26}^{2}$103

分析 先確定2個(gè)不同的英文字母的方法數(shù)為共A${\;}_{26}^{2}$C${\;}_{5}^{2}$種,再確定其余的3個(gè)位上的數(shù)字的方法有103 種,由分步計(jì)數(shù)原理求得不相同的牌照號(hào)碼數(shù).

解答 解:先從26個(gè)英文字母中選出2個(gè)不同的英文字,把它排在其中的2個(gè)位上,有A${\;}_{26}^{2}$C${\;}_{5}^{2}$種方法.
其余的3個(gè)位上確定3個(gè)數(shù)字的方法數(shù)共有103 個(gè),
由分步計(jì)數(shù)原理可得不相同的牌照號(hào)碼共A${\;}_{26}^{2}$103C${\;}_{5}^{2}$個(gè),
故選A.

點(diǎn)評(píng) 本題考查排列知識(shí)的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}是由正數(shù)組成的等比數(shù)列,Sn為其前n項(xiàng)和.已知a2a4=16,S3=7,則S5=(  )
A.15B.17C.31D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+(3-a)x+b在(0,+∞)上有3個(gè)單調(diào)區(qū)間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)若正數(shù)x,y滿足x+3y=5xy,求3x+4y的最小值;
(2)已知a為正實(shí)數(shù)且a2+$\frac{b^2}{2}$=1,求a$\sqrt{1+{b^2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.甲乙兩名學(xué)生六次數(shù)學(xué)測(cè)驗(yàn)成績(jī)(百分制)如圖所示.
(1)求甲、乙兩位同學(xué)的平均成績(jī);
(2)求兩位同學(xué)成績(jī)的方差,并說明哪個(gè)同學(xué)的成績(jī)更穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x+$\frac{a}{{e}^{x}}$(e為自然底數(shù)).
(1)當(dāng)a=e時(shí),求函數(shù)y=f(x)的極值;
(2)是否存在正數(shù)a,使得f(x)>a在定義域內(nèi)恒成立?若存在,求此滿足要求的a;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=sinx,若當(dāng)x∈[-$\frac{7π}{6}$,-$\frac{π}{3}$]時(shí),m≤f(x)≤n恒成立,則n-m的最小值是( 。
A.2B.$\frac{{\sqrt{3}+1}}{2}$C.$\frac{3}{2}$D.$\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知ABC的三頂點(diǎn)A(-1,-1),B(3,1),C(1,6),EF是△ABC的中位線,求EF所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)直線l過點(diǎn)P(-3,3),且傾斜角為$\frac{5π}{6}$
(1)寫出直線l的參數(shù)方程;
(2)設(shè)此直線與曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù))交A、B兩點(diǎn),求|PA|•|PB|;
(3)設(shè)A、B中點(diǎn)為M,求|PM|.

查看答案和解析>>

同步練習(xí)冊(cè)答案