【題目】在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,且長度單位相同.

1)求圓的極坐標方程;

2)若直線為參數(shù))被圓截得的弦長為2,求直線的傾斜角.

【答案】1;(2

【解析】

1)根據(jù)圓的參數(shù)方程消去參數(shù)得到,然后將,代入上式得整理求解.

2)根據(jù)直線的參數(shù)方程消去參數(shù)得到,再根據(jù)弦長為2,得到圓心的距離,然后由點到直線的距離求解.

1)因為圓的參數(shù)方程為,

消去參數(shù)得:,

又因為,

代入上式得:,

,

整理得:

所以圓的極坐標方程為.

2)因為直線,

消去參數(shù)得

因為圓的圓心,,又弦長為2,

所以圓心的距離,

時,

解得,

因為,

所以,

時,,成立,

綜上:的傾斜角.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.為了計算每天良馬和駑馬所走的路程之和,設(shè)計框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體中,點分別在棱上,且,

1)證明:點在平面內(nèi);

2)若,,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),,為曲線上的一動點.

(I)求動點對應的參數(shù)從變動到時,線段所掃過的圖形面積;

(Ⅱ)若直線與曲線的另一個交點為,是否存在點,使得為線段的中點?若存在,求出點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)若在點處的切線為,求的值;

(2)求的單調(diào)區(qū)間;

(3)若,求證:在時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知、分別為橢圓的左、右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于直線于點,線段的中垂線交于點.記點的軌跡為曲線.

1)求曲線的方程,并說明是什么曲線;

2)若直線與曲線交于兩點、,則在圓上是否存在兩點、,使得?若存在,請求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線l過拋物線Cy24x的焦點F且與C交于Ax1,y1),Bx2,y2)兩點,則y1y2_____.過A,B兩點分別作拋物線C的準線的垂線,垂足分別為P,Q,準線與x軸的交點為M,四邊形FAPM的面積記為S1,四邊形FBQM的面積記為S2,則S1S23|AF||BF|_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象上有且僅有兩個不同的點關(guān)于直線的對稱點在的圖象上,則實數(shù)的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“雜交水稻之父”袁隆平一生致力于雜交水稻技術(shù)的研究、應用與推廣,發(fā)明了“三系法”秈型雜交水稻,成功研究出“兩系法”雜交水稻,創(chuàng)建了超級雜交稻技術(shù)體系,為我國糧食安全、農(nóng)業(yè)科學發(fā)展和世界糧食供給做出了杰出貢獻;某雜交水稻種植研究所調(diào)查某地水稻的株高,得出株高(單位:cm)服從正態(tài)分布,其密度曲線函數(shù)為,則下列說法正確的是(

A.該地水稻的平均株高為100cm

B.該地水稻株高的方差為10

C.隨機測量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大

D.隨機測量一株水稻,其株高在(80,90)和在(100,110)(單位:cm)的概率一樣大

查看答案和解析>>

同步練習冊答案