6.已知函數(shù)$f(x)=2sin{(ωx+φ)_{\;}}(ω>0,|φ|≤\frac{π}{2})$的圖象如圖.
(1)根據(jù)函數(shù)的圖象求該函數(shù)的解析式.
(2)求函數(shù)f(x)在$x∈[0,\frac{π}{2}]$上的值域.

分析 (1)由圖可求T,利用周期公式可求ω,當(dāng)x=-$\frac{π}{12}$時,y=0,代入f(x)=2sin(2x+φ),結(jié)合范圍|φ|≤$\frac{π}{2}$,可求φ的值,即可得解函數(shù)解析式;
(2)由x的范圍可求$2x+\frac{π}{6}∈[\frac{π}{6},\frac{7π}{6}]$,利用正弦函數(shù)的圖象和性質(zhì)可求值域.

解答 (本題滿分為12分)
解:(1)由圖知$\frac{T}{2}$=$\frac{11π}{12}$-$\frac{5π}{12}$=$\frac{π}{2}$,…(2分)
所以T=π,ω=2.…(3分)
當(dāng)x=-$\frac{π}{12}$時,y=0,代入f(x)=2sin(2x+φ),
得2sin[2×(-$\frac{π}{12}$)+φ]=0,
所以φ-$\frac{π}{6}$=kπ,k∈Z,…(4分)
又|φ|≤$\frac{π}{2}$,
所以φ=$\frac{π}{6}$.…(5分)
所以f(x)=2sin(2x+$\frac{π}{6}$).…(6分)
(2)由題意得當(dāng)$x∈[0,\frac{π}{2}]$時,$2x+\frac{π}{6}∈[\frac{π}{6},\frac{7π}{6}]$,…(8分)
∴$2x+\frac{π}{6}=\frac{7π}{6}$時,f(x)min=-1;…(10分)
$2x+\frac{π}{6}=\frac{π}{2}$時,ymax=2.
∴f(x)的值域為[-1,2].…(12分)

點評 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象和性質(zhì),考查了數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某空間幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.$6π-2+2\sqrt{7}$B.$6π+2+2\sqrt{7}$C.2π+$\frac{2\sqrt{3}}{3}$D.4π+$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)試求圓(x-3)2+(y-2)2=100被點A(1,2)平分的弦所在的直線的方程;
(2)與x軸相切于點(5,0)且在y軸上截得的弦長為10的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.不用計算器求下列各式的值.
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2;
(2)計算:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.方程x2-y2=0表示的圖形是(  )
A.兩條相交但不垂直的直線B.兩條垂直直線
C.兩條平行直線D.一個點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,輸出的s值為(  )
A.2B.$\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,直線l:x=-1,點T(3,0),動點P滿足PS⊥l,垂足為S,且$\overrightarrow{OP}$•$\overrightarrow{ST}$=0,設(shè)動點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)Q是曲線C上異于點P的另一點,且直線PQ過點(1,0),線段PQ的中點為M,直線l與x軸的交點為N.求證:向量$\overrightarrow{SM}$與$\overrightarrow{NQ}$共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知一幾何體的三視圖,則它的體積為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=m+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=12.直線l過點$(-2\sqrt{2},0)$.
(Ⅰ)若直線l與曲線C交于A,B兩點,求|FA|•|FB|的值;
(Ⅱ)求曲線C的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案