函數(shù)f(x)=loga(x+1)-2(a>0,a≠1)的圖象恒過定點P,則P點的坐標(biāo)是
 
考點:對數(shù)函數(shù)的圖像與性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由于函數(shù)y=logax的圖象恒過定點(1,0),將y=logax的圖象先向左平移1個單位,再下平移2個單位,即可得到函數(shù)f(x)的圖象,進(jìn)而得到定點.
解答: 解:由于函數(shù)y=logax的圖象恒過定點(1,0),
將y=logax的圖象先向左平移1個單位,再下平移2個單位,
即可得到函數(shù)f(x)=loga(x+1)-2(a>0,a≠1)的圖象,
則恒過定點(0,-2).
故答案為:(0,-2).
點評:本題考查對數(shù)函數(shù)的圖象的特征,考查函數(shù)圖象的變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f′(x),f′(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f″(x),若在區(qū)間(a,b)上f″(x)<0,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,已知f(x)=
1
20
x5-
1
12
mx4-
3
2
x2在區(qū)間(-1,2)上為“凸函數(shù)”,則實數(shù)m的取值范圍為( 。
A、(-∞,
5
4
]
B、[-4,+∞)
C、[
5
4
,+∞)
D、[-4,
5
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正四棱柱的底面邊長為a,側(cè)棱長為l,且l>a.已知該正四棱柱的表面積是144cm2,對角線長是9cm,則a=
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓C:x2+y2-4y+3=0,關(guān)于直線2ax+by+6=0對稱,則由點(a,b)向圓所作的切線長的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(2x-1)2014=a0+a1x+a2x2+…+a2014x2014(x∈R),則
a0
a1+2a2+3a3+…+2014a2014
=( 。
A、
1
2014
B、-
1
2014
C、
1
4028
D、-
1
4028

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個空間幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、32+8
17
B、48
C、48+8
17
D、80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C:x2+y2-x+2y=0的圓心是
 
,與圓C關(guān)于直線l:x-y+1=0對稱的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)(
32
×
3
6+(
2
2
 
4
3
-4(
16
49
 -
1
2
-
42
×80.25-(-2014)0;
(2)log3.19.61+lg
1
1000
+ln(e2
3e
)+log3(log327).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列等式成立的是(  )
A、lg2•lg3=lg6
B、lg2+lg3=lg5
C、
lg2
lg3
=lg
2
3
D、lg2+lg3=lg6

查看答案和解析>>

同步練習(xí)冊答案