13.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an},a2=5,a8=10,則a5=( 。
A.$5\sqrt{2}$B.7C.6D.$4\sqrt{2}$

分析 根據(jù)等比數(shù)列的性質(zhì)進(jìn)行解答.

解答 解:∵{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,a2=5,a8=10,
∴a52=a2•a8=50,
∴a5=5$\sqrt{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,是基礎(chǔ)的計(jì)算題.若{an}為等比數(shù)列,且k+l=m+n,(k,l,m,n∈N*),則 ak•al=am•an

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知集合A={x|2a+1≤x≤3a-5},B={x<-1或x>16},若A∩B=A求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)中,在其定義域內(nèi)既是增函數(shù)又是奇函數(shù)的是( 。
A.y=-$\frac{1}{x}$B.y=log2(x-1)
C.y=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{-{3}^{-x},x<0}\end{array}\right.$D.y=ln(x+$\sqrt{{x}^{2}+1}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如果發(fā)現(xiàn)散點(diǎn)圖中所有的樣本點(diǎn)都在一條直線上,則殘差平方和等于0,解釋變量和預(yù)報(bào)變量之間的相關(guān)系數(shù)等于1或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.圓O1:x2-2x+y2+4y+1=0的圓心坐標(biāo)為(  )
A.(1,2)B.(-1,2)C.(1,-2)D.(-1,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.計(jì)算:$2{log_2}8+lg0.01-{log_2}\frac{1}{8}+{(0.01)^{-0.5}}$=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若等差數(shù)列{an}滿足a17+a18+a19>0,a17+a20<0,則當(dāng)n=18時(shí),{an}的前n項(xiàng)和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程是2x-y+1=0,若g(x)=$\frac{x}{f(x)}$,則g′(1)=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{9}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若$\frac{1}{x}$-$\frac{1}{y}$=2,則$\frac{3x+xy-3y}{x-xy-y}$的值為( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{5}{3}$D.$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案