【題目】已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開式中x的系數恰好是數列{an}的前n項和Sn .
(1)求數列{an}的通項公式;
(2)數列{bn}滿足 ,記數列{bn}的前n項和為Tn , 求證:Tn<1.
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的右焦點為F,過點F的直線交y軸于點N,交橢圓C于點A、P(P在第一象限),過點P作y軸的垂線交橢圓C于另外一點Q.若 .
(1)設直線PF、QF的斜率分別為k、k',求證: 為定值;
(2)若 且△APQ的面積為 ,求橢圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一臺機器由于使用時間較長,生產的零件有一些缺損.按不同轉速生產出來的零件有缺損的統(tǒng)計數據如下表所示:
轉速x(轉/秒) | 16 | 4 | 12 | 8 |
每小時生產有缺損零件數y(個) | 11 | 9 | 8 | 5 |
(1)作出散點圖;
(2)如果y與x線性相關,求出回歸直線方程;
(3)若實際生產中,允許每小時的產品中有缺損的零件最多為10個,那么,機器的運轉速度應控制在什么范圍內?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學作為藍色海洋教育特色學校,隨機抽取100名學生,進行一次海洋知識測試,按測試成績(假設考試成績均在[65,90)內)分組如下:第一組[65,70),第二組 [70,75),第三組[75,80),第四組 [80,85),第五組 [85,90).得到頻率分布直方圖如圖C34.
(1)求測試成績在[80,85)內的頻率;
(2)從第三、四、五組學生中用分層抽樣的方法抽取6名學生組成海洋知識宣講小組,定期在校內進行義務宣講,并在這6名學生中隨機選取2名參加市組織的藍色海洋教育義務宣講隊,求第四組至少有1名學生被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的長軸長為6,且橢圓C與圓M:(x﹣2)2+y2= 的公共弦長為 .
(1)求橢圓C的方程,
(2)過點P(0,2)作斜率為k(k≠0)的直線l與橢圓C交于兩點A,B,試判斷在x軸上是否存在點D,使得△ADB為以AB為底邊的等腰三角形,若存在,求出點D的橫坐標的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若a>0,b>0,則稱 為a,b的調和平均數.如圖,點C為線段AB上的點,且AC=a,BC=b,點O為線段AB中點,以AB為直徑做半圓,過點C作AB的垂線交半圓于D,連結OD,AD,BD.過點C作OD的垂線,垂足為E,則圖中線段OD的長度是a,b的算術平均數,那么圖中表示a,b的幾何平均數與調和平均數的線段,以及由此得到的不等關系分別是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.
(1)求橢圓方程;
(2)設不過原點O的直線,與該橢圓交于P、Q兩點,直線OP、OQ的斜率依次為,滿足,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=-x3+2ax2-3a2x(a∈R且a≠0).
(1)當a=-1時,求曲線y=f(x)在點(-2,f(-2))處的切線方程;
(2)當a>0時,求函數y=f(x)的單調區(qū)間和極值;
(3)當x∈[2a,2a+2]時,不等式|f′(x)|≤3a恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com