16.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2≥0}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y的最大值為(  )
A.0B.3C.6D.12

分析 由題意作平面區(qū)域,化目標(biāo)函數(shù)z=x+2y為y=-$\frac{1}{2}$x+$\frac{1}{2}$z,從而求得.

解答 解:由題意作平面區(qū)域如下,
化目標(biāo)函數(shù)z=x+2y為y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
結(jié)合圖象可得,
過點(diǎn)A(0,3)時(shí)有最大值為
z=0+6=6,
故選:C

點(diǎn)評(píng) 本題考查了線性規(guī)劃問題,同時(shí)考查了數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若存在x0∈(0,1),使得(2-x0)e${\;}^{a{x}_{0}}$≥2+x0,則實(shí)數(shù)a的取值范圍是(  )
A.(ln3,+∞)B.(1,+∞)C.($\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知直線ax+by=1經(jīng)過點(diǎn)(1,2),則2a+4b的最小值為( 。
A.$\sqrt{2}$B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直三棱柱ABC-A′B′C中,底面是以AC為斜邊的等腰直角三角形,且AA′=AB,求異面直線AB′與BC′所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個(gè)總體為A,B兩層,用分層抽樣的方法從總體中抽取一個(gè)容量為30的樣本,已知B層中的每個(gè)個(gè)體被抽到的概率都是$\frac{1}{12}$,則總體的個(gè)體數(shù)為360.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,則滿足條件|m$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{33}$的所有實(shí)數(shù)m之和為( 。
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.${C}_{n}^{5-n}$+${C}_{9-n}^{n+1}$的值為18或5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若x為區(qū)間[-6,6]內(nèi)的任意一個(gè)實(shí)數(shù),則樣本7,5,x,3,4的平均數(shù)落在區(qū)間[4,5]內(nèi)的概率為( 。
A.$\frac{1}{4}$B.$\frac{5}{12}$C.$\frac{7}{12}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某公共汽車有A,B路路車,A路車每4分鐘一班,B路車每6分鐘一班,求滿足下列條件的概率:
(1)一個(gè)乘客坐A路車時(shí),候車時(shí)間不超過2分鐘的概率;
(2)一位想乘A路汽車的乘客來到該站并盼望下一輛是A路車,試求下一輛是A路車的概率;
(3)在兩分鐘內(nèi)有一輛汽車到達(dá)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案