4.根據(jù)人民網(wǎng)報(bào)道,2015年11月10日早上6時(shí),紹興的AQI(空氣質(zhì)量指數(shù))達(dá)到290,屬于重度污染,成為,成為74個(gè)公布PM2.5(細(xì)顆粒物)數(shù)據(jù)城市中空氣質(zhì)量最差的城市,保護(hù)環(huán)境,刻不容緩.某單位在國(guó)家科研部門(mén)的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,可以把細(xì)顆粒物進(jìn)行處理.已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似的表示為y=$\frac{1}{2}$x2-200x+80000.則每噸細(xì)顆粒物的平均處理成本最低為(  )
A.100元B.200元C.300元D.400元

分析 通過(guò)記每噸細(xì)顆粒物的平均處理成本t(x)=$\frac{y}{x}$化簡(jiǎn)可知t(x)=$\frac{1}{2}$x+$\frac{80000}{x}$-200,利用基本不等式計(jì)算即得結(jié)論.

解答 解:依題意,300≤x≤600,記每噸細(xì)顆粒物的平均處理成本為t(x),
則t(x)=$\frac{y}{x}$=$\frac{\frac{1}{2}{x}^{2}-200x+80000}{x}$=$\frac{1}{2}$x+$\frac{80000}{x}$-200,
∵$\frac{1}{2}$x+$\frac{80000}{x}$≥2$\sqrt{\frac{x}{2}•\frac{80000}{x}}$=400,
當(dāng)且僅當(dāng)$\frac{1}{2}$x=$\frac{80000}{x}$即x=400時(shí)取等號(hào),
∴當(dāng)x=400時(shí)t(x)取最小值400-200=200(元),
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)模型的選擇與應(yīng)用,考查基本不等式,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓$\frac{{x}^{2}}{4}$+y2=1左頂點(diǎn)為A,下頂點(diǎn)B,分別過(guò)A和B作兩條平行直線l1和l2,其中l(wèi)1與y軸交于C點(diǎn),與橢圓交于另一點(diǎn)為P,l2與x軸交于D點(diǎn),與橢圓交于另一點(diǎn)為Q,設(shè)直線CD與直線PQ交于點(diǎn)E.
(1)當(dāng)直線OP與直線OQ的斜率都存在時(shí),證明:直線OP與直線OQ的斜率乘積為定值;
(2)證明:直線OE∥直線l1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.直線ax+by-a-b=0(a≠)與圓x2+y2-2=0的位置關(guān)系為(  )
A.相離B.相切C.相交或相切D.相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,是圓錐一部分和四分之一球組成的組合體的三視圖,則此幾何體的體積為( 。
A.$\frac{8π}{3}$B.$\frac{16π}{3}$C.$\frac{14π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.過(guò)原點(diǎn)的直線與雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)交于M,N兩點(diǎn),P是雙曲線上異于M,N的一點(diǎn),若直線MP與直線NP的斜率都存在且乘積為$\frac{5}{4}$,則雙曲線的離心率為( 。
A.$\frac{3}{2}$B.$\frac{9}{4}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,若輸入的x=4.5,則輸出的i=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.閱讀如圖的算法框圖,輸出的結(jié)果S的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.0C.$\sqrt{3}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某幾何體的三視圖如圖所示.則該幾何體的外接球的表面積為( 。
A.B.16πC.32πD.64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知空間向量$\overrightarrow a=(-2,x,1),\overrightarrow b=(1-x,-1,-2)$,若$\overrightarrow a⊥\overrightarrow b$,則x=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案