【題目】已知圓:,直線被圓所截得的弦的中點為P(5,3).(1)求直線的方程;(2)若直線:與圓相交于兩個不同的點,求b的取值范圍.
【答案】(1)(2)
【解析】
(I)根據(jù)圓心CP與半徑垂直,可求出直線l1的斜率,進(jìn)而得到點斜式方程,再化成一般式即可.
(II)根據(jù)直線與圓的位置關(guān)系,圓心到直線的距離小于半徑得到關(guān)于b的不等式,從而解出b的取值范圍.
(1)由,得,
∴圓心,半徑為3.…………………2分
由垂徑定理知直線直線,
直線的斜率,故直線的斜率,……………5分
∴直線的方程為,即.…………………7分
(2)解法1:由題意知方程組有兩組解,由方程組消去得
,該方程應(yīng)有兩個不同的解,…………………9分
∴,化簡得,………………10分
由解得
∴的解為.…………………………13分
故b的取值范圍是.…………………………14分
解法2:同(1)有圓心,半徑為3.…………………9分
由題意知,圓心到直線:的距離小于圓的半徑,即
,即,………………………11分
解得,………………………13分
故b的取值范圍是.…………………14分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是無窮數(shù)列,滿足lgan+1=|lgan﹣lgan﹣1|(n=2,3,4,…).
(1)若a1=2,a2=3,求a3 , a4 , a5的值;
(2)求證:“數(shù)列{an}中存在ak(k∈N*)使得lgak=0”是“數(shù)列{an}中有無數(shù)多項是1”的充要條件;
(3)求證:在數(shù)列{an}中ak(k∈N*),使得1≤ak<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣,0)和B(,0),動點C到A、B兩點的距離之差的絕對值為2.
(1)求點C的軌跡方程;
(2)點C的軌跡與經(jīng)過點(2,0)且斜率為1的直線交于D、E兩點,求線段DE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2ωx(ω>0),將y=f(x)的圖象向右平移 個單位長度后,若所得圖象與原圖象重合,則ω的最小值等于( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第 屆夏季奧林匹克運動會將于2016年8月5日 21日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運會中國代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).
| 第31屆里約 | 第30屆倫敦 | 第29屆北京 | 第28屆雅典 | 第27屆悉尼 |
中國 | 26 | 38 | 51 | 32 | 28 |
俄羅斯 | 19 | 24 | 24 | 27 | 32 |
(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運會兩國代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結(jié)論即可);
(2)下表是近五屆奧運會中國代表團(tuán)獲得的金牌數(shù)之和 (從第 屆算起,不包括之前已獲得的金牌數(shù))隨時間 (時間代號)變化的數(shù)據(jù):
屆 | 27 | 28 | 29 | 30 | 31 |
時間代號(x) | 1 | 2 | 3 | 4 | 5 |
金牌數(shù)之和(y枚) | 28 | 60 | 111 | 149 | 175 |
作出散點圖如下:
①由圖中可以看出,金牌數(shù)之和 與時間代號 之間存在線性相關(guān)關(guān)系,請求出 關(guān)于 的線性回歸方程;
②利用①中的回歸方程,預(yù)測2020年第32屆奧林匹克運動會中國代表團(tuán)獲得的金牌數(shù).
參考數(shù)據(jù):,,.
附:對于一組數(shù)據(jù) ,,,,其回歸直線的斜率的最小二乘估計為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第 屆夏季奧林匹克運動會將于2016年8月5日 21日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運會中國代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).
| 第31屆里約 | 第30屆倫敦 | 第29屆北京 | 第28屆雅典 | 第27屆悉尼 |
中國 | 26 | 38 | 51 | 32 | 28 |
俄羅斯 | 19 | 24 | 24 | 27 | 32 |
(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運會兩國代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結(jié)論即可);
(2)下表是近五屆奧運會中國代表團(tuán)獲得的金牌數(shù)之和 (從第 屆算起,不包括之前已獲得的金牌數(shù))隨時間 (時間代號)變化的數(shù)據(jù):
屆 | 27 | 28 | 29 | 30 | 31 |
時間代號(x) | 1 | 2 | 3 | 5 | |
金牌數(shù)之和(y枚) | 28 | 60 | 111 | 149 | 175 |
作出散點圖如下:
①由圖中可以看出,金牌數(shù)之和 與時間代號 之間存在線性相關(guān)關(guān)系,請求出 關(guān)于 的線性回歸方程;
②利用①中的回歸方程,預(yù)測2020年第32屆奧林匹克運動會中國代表團(tuán)獲得的金牌數(shù).
參考數(shù)據(jù):,,.
附:對于一組數(shù)據(jù) ,,,,其回歸直線的斜率的最小二乘估計為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時,有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB=BC=CA=AP=2,G是△ABC重心,E是線段PC上一點,且CE=λCP.
(1)當(dāng)EG∥平面PAB時,求λ的值;
(2)當(dāng)直線CP與平面ABE所成角的正弦值為時,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=4,AB=4 ,∠CDA=120°,點N在線段PB上,且PN=2.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)求二面角A﹣PC﹣B的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com