【題目】如圖,在直三棱柱側(cè)棱和底面垂直的棱柱中,平面側(cè)面,,線段AC、上分別有一點E、F且滿足,

求證:;

求點E到直線的距離;

求二面角的平面角的余弦值.

【答案】1)見解析

2

3

【解析】

試題(1)過點A在平面A1ABB1內(nèi)作AD⊥A1BD,由已知條件推導出AD⊥平面A1BC,由此能證明AB⊥BC

2)以點B為坐標原點,以BC、BA、BB1所在的直線分別為x軸、y軸、z軸,建立空間直角坐標系,利用向量法能求出點E到直線A1B的距離.

3)分別求出平面BEF的法向量和平面BEC的法向量,利用向量法能求出二面角F﹣BE﹣C的平面角的余弦值.

1)證明:如圖,過點A在平面A1ABB1內(nèi)作AD⊥A1BD,

則由平面A1BC⊥側(cè)面A1ABB1,

且平面A1BC∩側(cè)面A1ABB1=A1B,

∴AD⊥平面A1BC,

∵BC平面A1BC,∴AD⊥BC

三棱柱ABC﹣A1B1C1是直三棱柱,∴AA1底面ABC,∴AA1⊥BC

∵AA1∩AD=A∴BC⊥側(cè)面A1ABB1,

∵AB側(cè)面A1ABB1∴AB⊥BC.(4分)

2)解:由(1)知,以點B為坐標原點,

BC、BABB1所在的直線分別為x軸、y軸、z軸,

建立如圖所示的空間直角坐標系,

B000),A0,30),C3,00),A10,3,3

線段AC、A1B上分別有一點E、F,滿足2AE=EC,2BF=FA1,

∴E1,2,0),F0,11),

=0,∴EF⊥BA1

E到直線A1B的距離.(8分)

3)解:,

設(shè)平面BEF的法向量,

,取x=2,得=2,﹣1,1),

由題意知平面BEC的法向量,

設(shè)二面角F﹣BE﹣C的平面角為θ

∵θ是鈍角,∴cosθ=﹣|cos|=﹣=﹣,

二面角F﹣BE﹣C的平面角的余弦值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若關(guān)于x的不等式的解集為,且中只有一個整數(shù),則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)+交通模式的迅猛發(fā)展,共享自行車在很多城市相繼出現(xiàn).某運營公司為了了解某地區(qū)用戶對其所提供的服務的滿意度,隨機調(diào)查了40個用戶,得到用戶的滿意度評分如下:

用戶編號

評分

用戶編號

評分

用戶編號

評分

用戶編號

評分

01

78

11

88

21

79

31

93

02

73

12

86

22

83

32

78

03

81

13

95

23

72

33

75

04

92

14

76

24

74

34

81

05

95

15

97

25

91

35

84

06

85

16

78

26

66

36

77

07

79

17

88

27

80

37

81

08

84

18

82

28

83

38

76

09

63

19

76

29

74

39

85

10

86

20

89

30

82

40

89

現(xiàn)用隨機數(shù)法讀取用戶編號,且從第2行第6列的數(shù)開始向右讀,從40名用戶中抽取容量為10的樣本.(下面是隨機數(shù)表第1行第至第5行)

95 33 95 22 00 18 74 72 00 18 38 79 58 69 32

81 76 80 16 92 04 80 44 25 39 91 03 69 79 83

54 31 62 27 32 94 07 53 89 35 96 35 23 79 18

05 98 90 07 35 46 40 62 98 80 54 97 20 56 95

1)請你列出抽到的10個樣本的評分數(shù)據(jù);

2)計算所抽到的10個樣本的均值和方差;

3)在(2)條件下,若用戶的滿意度評分在之間,則滿意度等級為”.試應用樣本估計總體的思想,根據(jù)所抽到的10個樣本,估計該地區(qū)滿意度等級為的用戶所占的百分比是多少?(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高.自2018年10月1日起,個人所得稅起征點和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調(diào)整前后的計算方法如下表:

(1)假如小李某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,y表示應納的稅,試寫出調(diào)整前后y關(guān)于的函數(shù)表達式;

(2)某稅務部門在小李所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:

先從收入在[3000,5000)及[5000,7000)的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率;

(3)小李該月的工資、薪金等稅前收入為7500元時,請你幫小李算一下調(diào)整后小李的實際收入比調(diào)整前增加了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐ABCD中,AB=AD,BDCD,點E、F分別是棱BC、BD的中點.

1)求證:EF∥平面ACD;

2)求證:AEBD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于直線對稱,且圓心在軸上.

(1)求的標準方程;

(2)已經(jīng)動點在直線上,過點的兩條切線、,切點分別為.

①記四邊形的面積為,求的最小值;

②證明直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】向量,,函數(shù)

1)求的表達式,并在直角坐標中畫出函數(shù)在區(qū)間上的草圖;

2)若方程上有兩個根、,求的取值范圍及的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a11anan1n2n≥2nN*.

1)求數(shù)列{an}的通項公式:

2)若對任意的nN*,不等式1≤man≤5恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案