分析 (Ⅰ)證明:ED⊥平面ABCD,BD⊥平面ADEF,即可證明平面BDM⊥平面ADEF;
(Ⅱ)在平面DMC內(nèi),過M作MN⊥DC,垂足為N,則MN∥ED,利用三棱錐的體積計算公式求出MN,可得結(jié)論.
解答 (Ⅰ)證明:∵DC=BC=1,DC⊥BC,
∴BD=$\sqrt{2}$,
∵AD=$\sqrt{2}$,AB=2,
∴AD2+BD2=AB2,
∴∠ADB=90°,
∴AD⊥BD,
∵平面ADEF⊥平面ABCD,ED⊥AD,平面ADEF∩平面ABCD=AD,
∴ED⊥平面ABCD,
∴BD⊥ED,
∵AD∩DE=D,
∴BD⊥平面ADEF,
∵BD?平面BDM,
∴平面BDM⊥平面ADEF;
(Ⅱ)解:如圖,在平面DMC內(nèi),過M作MN⊥DC,垂足為N,則MN∥ED,
∵ED⊥平面ABCD,
∴MN⊥平面ABCD,
∵VB-CDM=VM-CDB=$\frac{1}{3}MN•{S}_{△BDC}$=$\frac{\sqrt{2}}{18}$,
∴$\frac{1}{3}×\frac{1}{2}×1×1×MN$=$\frac{\sqrt{2}}{18}$,
∴MN=$\frac{\sqrt{2}}{3}$,
∴$\frac{MN}{ED}=\frac{CM}{CE}$=$\frac{\frac{\sqrt{2}}{3}}{\sqrt{2}}$=$\frac{1}{3}$,
∴CM=$\frac{1}{3}$CE,
∴點M在線段CE的三等分點且靠近C處.
點評 本題考查的知識點是平面與平面垂直的判定與性質(zhì),考查三棱錐體積的計算,熟練掌握空間直線與平面不同位置關(guān)系(平行和垂直)的判定定理、性質(zhì)定理、定義及幾何特征是解答本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0)∪(0,1) | B. | (-∞,-1)∪(0,1) | C. | (-1,0)∪(1,+∞) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com