分析 (1)依題意,設(shè)橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$,c=1.再利用|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列,即可得到a,利用b2=a2-c2得到a即可得到橢圓的方程;
(2)將直線l的方程y=kx+m代入橢圓C的方程3x2+4y2=12中,得到關(guān)于x的一元二次方程,由直線l與橢圓C僅有一個(gè)公共點(diǎn)知,△=0,即可得到m,k的關(guān)系式,利用點(diǎn)到直線的距離公式即可得到|F1M|+|F2N|,利用|F1M|+|F2N|最大時(shí),即可求直線l的方程.
解答 解:(Ⅰ)依題意,設(shè)橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0).
∵|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列,
∴2a=|PF1|+|PF2|=2|F1F2|=4,a=2.
又∵c=1,∴b2=3.∴橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$…(4分)
(Ⅱ)將直線l的方程y=kx+m代入橢圓C的方程中,得
(4k2+3)x2+8kmx+4m2-12=0.
由直線l與橢圓C僅有一個(gè)公共點(diǎn)知,△=64k2m2-4(4k2+3)(4m2-12)=0,
化簡(jiǎn)得:m2=4k2+3. …(6分)
設(shè)坐標(biāo)原點(diǎn)到動(dòng)直線L的距離為d,則
2d=|F1M|+|F2N|=2$\sqrt{\frac{{m}^{2}}{1+{k}^{2}}}$…(8分)
=2$\sqrt{4-\frac{1}{1+{k}^{2}}}$,
∵k2≤1,∴k2=1時(shí),|F1M|+|F2N|最大
此時(shí)m=$\sqrt{7}$.
故所求直線方程為y=-x+$\sqrt{7}$或y=x+$\sqrt{7}$…(12分)
點(diǎn)評(píng) 本題主要考查橢圓的方程與性質(zhì)、直線方程、直線與橢圓的位置關(guān)系、等差數(shù)列等基礎(chǔ)知識(shí),考查運(yùn)算能力、推理論證以及分析問題、解決問題的能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x1<x2<x3<x4 | B. | x3<x1<x4<x2 | C. | x1<x3<x4<x2 | D. | x1<x3<x2<x4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p真q真 | B. | p真q假 | C. | p假q假 | D. | p假q真 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com