分析 令x=$\frac{1}{u}$,則dx=-$\frac{1}{u^2}$du,左邊=${∫}_{x}^{1}$$\frac{dx}{1+{x}^{2}}$=${∫}_{\frac{1}{x}}^{1}$$\frac{1}{1+(\frac{1}{u})^2}$•(-$\frac{1}{u^2}$)du=${∫}_{1}^{\frac{1}{x}}$$\frac{1}{u^2+1}$du=${∫}_{1}^{\frac{1}{x}}$$\frac{dx}{x^2+1}$=右邊.
解答 證明:令x=$\frac{1}{u}$,則dx=d$\frac{1}{u}$=-$\frac{1}{u^2}$du,所以,
左邊=${∫}_{x}^{1}$$\frac{dx}{1+{x}^{2}}$=${∫}_{\frac{1}{x}}^{1}$$\frac{1}{1+(\frac{1}{u})^2}$•(-$\frac{1}{u^2}$)du
=${∫}_{1}^{\frac{1}{x}}$$\frac{1}{1+(\frac{1}{u})^2}$•$\frac{1}{u^2}$du
=${∫}_{1}^{\frac{1}{x}}$$\frac{1}{u^2+1}$du
=${∫}_{1}^{\frac{1}{x}}$$\frac{dx}{x^2+1}$
=右邊.
因此,${∫}_{x}^{1}$$\frac{dx}{1+{x}^{2}}$=${∫}_{1}^{\frac{1}{x}}$$\frac{dx}{x^2+1}$.
點評 本題主要考查了定積分的運算,以及運用換元法證明積分恒等式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{7π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | ±$\frac{1}{2}$ | D. | ±$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 相切 | B. | 相交且直線過圓心 | ||
C. | 相交且直線不過圓心 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 2($\sqrt{3}$+1) | D. | 2($\sqrt{3}$-1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com