分析 令x=$\frac{1}{u}$,則dx=-$\frac{1}{u^2}$du,左邊=${∫}_{x}^{1}$$\frac{dx}{1+{x}^{2}}$=${∫}_{\frac{1}{x}}^{1}$$\frac{1}{1+(\frac{1}{u})^2}$•(-$\frac{1}{u^2}$)du=${∫}_{1}^{\frac{1}{x}}$$\frac{1}{u^2+1}$du=${∫}_{1}^{\frac{1}{x}}$$\frac{dx}{x^2+1}$=右邊.
解答 證明:令x=$\frac{1}{u}$,則dx=d$\frac{1}{u}$=-$\frac{1}{u^2}$du,所以,
左邊=${∫}_{x}^{1}$$\frac{dx}{1+{x}^{2}}$=${∫}_{\frac{1}{x}}^{1}$$\frac{1}{1+(\frac{1}{u})^2}$•(-$\frac{1}{u^2}$)du
=${∫}_{1}^{\frac{1}{x}}$$\frac{1}{1+(\frac{1}{u})^2}$•$\frac{1}{u^2}$du
=${∫}_{1}^{\frac{1}{x}}$$\frac{1}{u^2+1}$du
=${∫}_{1}^{\frac{1}{x}}$$\frac{dx}{x^2+1}$
=右邊.
因此,${∫}_{x}^{1}$$\frac{dx}{1+{x}^{2}}$=${∫}_{1}^{\frac{1}{x}}$$\frac{dx}{x^2+1}$.
點(diǎn)評(píng) 本題主要考查了定積分的運(yùn)算,以及運(yùn)用換元法證明積分恒等式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{7π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | ±$\frac{1}{2}$ | D. | ±$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 相切 | B. | 相交且直線(xiàn)過(guò)圓心 | ||
C. | 相交且直線(xiàn)不過(guò)圓心 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 2($\sqrt{3}$+1) | D. | 2($\sqrt{3}$-1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com