12.在△ABC中,已知A=30°,a=8,b=8$\sqrt{3}$,求角C及邊c的大。

分析 由已知利用正弦定理可求sinB的值,利用大邊對大角可得B的值,分類討論,利用三角形內(nèi)角和定理可求C,進(jìn)而可求c的值.

解答 解:∵在△ABC中,A=30°,a=8,b=8$\sqrt{3}$,
∴由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$,得sin B=$\frac{bsinA}{a}$=$\frac{8\sqrt{3}×\frac{1}{2}}{8}$=$\frac{\sqrt{3}}{2}$,
又∵b>a,
∴B=60°或120°.
當(dāng)B=60°時(shí),C=180°-30°-60°=90°,
∴$c=\sqrt{{a^2}+{b^2}}=\sqrt{{{(8)}^2}+{{({8\sqrt{2}})}^2}}=16$;
當(dāng)B=120°時(shí),C=180°-30°-120°=30°,
∴a=c=8.

點(diǎn)評(píng) 本題主要考查了正弦定理,大邊對大角,勾股定理等知識(shí)在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平面α和平面β的法向量分別為$\overrightarrow{m}$=(3,1,-5),$\overrightarrow{n}$=(-6,-2,10),則( 。
A.α⊥βB.α∥β
C.α與β相交但不垂直D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=-2sin(2x+$\frac{π}{6}$),則f(0)=-1,最小正周期是π,f (x)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(文科做)已知a,b,c分別是△ABC的角A,B,C的對邊,且b2=a2+c2+ac.
(1)若b=$\sqrt{21}$,S△ABC=$\sqrt{3}$,求a的值;
(2)求$\frac{{bsin({{{30}°}-C})}}{a-c}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.事件A,B互斥,它們都不發(fā)生的概率為$\frac{2}{5}$,且P(A)=2P(B),則$P(\overline A)$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一物體在力F(x)=$\left\{\begin{array}{l}{2,(0≤x≤2)}\\{2x-2,(x>2)}\end{array}\right.$(單位:N)的作用下沿與力F相同的方向,從x=0處運(yùn)動(dòng)到x=4(單位:m)處,則力F(x)作的功為(  )
A.10 JB.12 JC.14 JD.16 J

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}滿足:a1=2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$,則a1a2a3…a15=3;設(shè)bn=(-1)nan,數(shù)列{bn}前n項(xiàng)的和為Sn,則S2016=-2100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知不等式x2-2x-3<0的解集為A,不等式x2+x-6<0的解集為B.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集為A∩B,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角α的終邊經(jīng)過點(diǎn)P(1,2),則cos2α等于(  )
A.-$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊答案