分析 (1)將m=12代入得到f(x)的解析式,根據(jù)解析式要有意義,列出不等式,求解即可得到f(x)的定義域;
(2)將f(x)在(-∞,-1]上恒取正值,等價(jià)為f(x)>0在(-∞,-1]上恒成立,轉(zhuǎn)化為f(x)min>0,利用f(x)的單調(diào)性即可求出f(x)的最小值,從而列出不等式,求解即可得到m的取值范圍.
解答 解:(1)當(dāng)m=12時(shí),f(x)=lg[(12)x-2x],
∴(12)x-2x>0,即2-x>2x,
∴-x>x,即x<0,
∴函數(shù)f(x)的定義域?yàn)閧x|x<0};
(2)設(shè)x2<0,x1<0,且x2>x1,
∴x2-x1>0,
令g(x)=mx-2x,
∴g(x2)-g(x1)=mx2-2x2-mx1+2x1=mx2-mx1+2x1-2x2,
∵0<m<1,x1<x2<0,
∴mx2-mx1<0,2x1-2x2<0,
∴g(x2)-g(x1)<0,即g(x2)<g(x1),
∴l(xiāng)g(g(x2))<lg(g(x1)),
∴l(xiāng)g(g(x2))-lg(g(x1))<0,
∴f(x2)<f(x1),
∴f(x)在(-∞,0)上是減函數(shù),
∴f(x)在(-∞,-1]上是單調(diào)遞減函數(shù),
∴f(x)在(-∞,-1]上的最小值為f(-1)=lg(m-1-2-1),
∵f(x)在(-∞,-1]上恒取正值,即f(x)>0在(-∞,-1]上恒成立,
∴f(x)min>0,
∴f(-1)=lg(m-1-2-1)>0,即m-1-2-1>1,
∴1m>1+12=32,
∵0<m<1,
∴0<m<23,
故m的取值范圍為0<m<23.
點(diǎn)評(píng) 本題考查了函數(shù)定義域的求解,函數(shù)單調(diào)性的判斷及其證明,函數(shù)恒成立問(wèn)題的求解.對(duì)于求函數(shù)的定義域即求使得解析式有意義的x的取值集合.函數(shù)恒成立問(wèn)題的,一般選用參變量分離法、最值法、數(shù)形結(jié)合法進(jìn)行求解.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
2x-\frac{π}{3} | -\frac{4π}{3} | -π | -\frac{π}{2} | 0 | \frac{π}{2} | \frac{2π}{3} |
x | -\frac{π}{2} | -\frac{π}{3} | -\frac{π}{12} | \frac{π}{6} | \frac{5π}{12} | \frac{π}{2} |
f(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -\frac{1}{2}\overrightarrow{a}+\frac{1}{2}\overrightarrow+\overrightarrow{c} | B. | \frac{1}{2}\overrightarrow{a}+\frac{1}{2}\overrightarrow+\overrightarrow{c} | C. | -\frac{1}{2}\overrightarrow{a}-\frac{1}{2}\overrightarrow+\overrightarrow{c} | D. | \frac{1}{2}\overrightarrow{a}-\frac{1}{2}\overrightarrow+\overrightarrow{c} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | \sqrt{2} | C. | 2 | D. | \sqrt{3} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com