17.在數(shù)列{an}的前n項(xiàng)和為Sn,2(Sn+1)=3an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{$\frac{2n}{{a}_{n}}$}前n項(xiàng)和為Tn,求證:Tn<$\frac{9}{4}$.

分析 (1)利用遞推式與等比數(shù)列的通項(xiàng)公式即可得出;
(2)利用“錯(cuò)位相減法”、等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 (1)解:∵2(Sn+1)=3an(n∈N*),
∴當(dāng)n=1時(shí),2(a1+1)=3a1,解得a1=2,
當(dāng)n≥2時(shí),2(Sn-1+1)=3an-1,2an=3an-3an-1,化為an=3an-1,
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)為2,公比為3,
∴an=2×3n-1
(2)證明:$\frac{2n}{{a}_{n}}$=$\frac{n}{{3}^{n-1}}$,
∴數(shù)列{$\frac{2n}{{a}_{n}}$}前n項(xiàng)和為Tn=$1+\frac{2}{3}+\frac{3}{{3}^{2}}$+…+$\frac{n}{{3}^{n-1}}$,
$\frac{1}{3}{T}_{n}$=$\frac{1}{3}+\frac{2}{{3}^{2}}$+…+$\frac{n-1}{{3}^{n-1}}+\frac{n}{{3}^{n}}$,
∴$\frac{2}{3}{T}_{n}$=1+$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n-1}}$-$\frac{n}{{3}^{n}}$=$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$-$\frac{n}{{3}^{n}}$=$\frac{3(1-\frac{1}{{3}^{n}})}{2}$-$\frac{n}{{3}^{n}}$=$\frac{3}{2}$-$\frac{3+2n}{2×{3}^{n}}$,
∴Tn=$\frac{9}{4}$-$\frac{3+2n}{4×{3}^{n-1}}$$<\frac{9}{4}$.

點(diǎn)評(píng) 本題考查了遞推式、等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A、B、C的對(duì)邊分別是a、b、c.已知(2a-c)cosB=bcosC.
(1)求角B的值;
(2)若a=1,c=2,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,且|$\overrightarrow$|=2,$\overrightarrow$在$\overrightarrow{a}$方向上的投影是-1,$\overrightarrow{a}$在$\overrightarrow$方向上的投影是-3,$\overrightarrow{BD}$=λ$\overrightarrow{BA}$.
(1)求$\overrightarrow{a}$•$\overrightarrow$;
(2)若λ=$\frac{1}{3}$,求|$\overrightarrow{OD}$|;
(3)若OD⊥BA,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*,則數(shù)列{an}的通項(xiàng)公式是( 。
A.an=3•2n-1-2B.an=3•2n-2C.an=3•4n-1-2D.an=3•2n+1-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知Sn為正項(xiàng)數(shù)列{an}的前n項(xiàng)和,Sn=$\frac{1}{2}$an2+$\frac{1}{2}$an,n∈N+,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,且A-C=90°,a+c=$\sqrt{2}$b,求cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C的中心在原點(diǎn),左焦點(diǎn)為F1(-1,0),右準(zhǔn)線方程為:x=4
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C上點(diǎn)N到定點(diǎn)M(m,0)(0<m<2)的距離的最小值為1,求m的值及點(diǎn)N的坐標(biāo);
(3)分別過(guò)橢圓C的四個(gè)頂點(diǎn)作坐標(biāo)軸的垂線,圍成如圖所示的矩形,A、B是所圍成的矩形在x軸上方的兩個(gè)頂點(diǎn).若P、Q是橢圓C上兩個(gè)動(dòng)點(diǎn),直線OP、OQ與橢圓的另一交點(diǎn)分別為P1、Q1,且直線OP、OQ的斜率之積等于直線OA、OB的斜率之積,試探求四邊形PQP1Q1的面積是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若焦點(diǎn)在y軸上的橢圓$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{4}$=1的長(zhǎng)軸長(zhǎng)是短軸的2倍,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,若F關(guān)于直線$\sqrt{3}$x+y=0的對(duì)稱點(diǎn)A是橢圓C上的點(diǎn),則橢圓C的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$一l

查看答案和解析>>

同步練習(xí)冊(cè)答案