分析 (1)利用遞推式與等比數(shù)列的通項(xiàng)公式即可得出;
(2)利用“錯(cuò)位相減法”、等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 (1)解:∵2(Sn+1)=3an(n∈N*),
∴當(dāng)n=1時(shí),2(a1+1)=3a1,解得a1=2,
當(dāng)n≥2時(shí),2(Sn-1+1)=3an-1,2an=3an-3an-1,化為an=3an-1,
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)為2,公比為3,
∴an=2×3n-1.
(2)證明:$\frac{2n}{{a}_{n}}$=$\frac{n}{{3}^{n-1}}$,
∴數(shù)列{$\frac{2n}{{a}_{n}}$}前n項(xiàng)和為Tn=$1+\frac{2}{3}+\frac{3}{{3}^{2}}$+…+$\frac{n}{{3}^{n-1}}$,
$\frac{1}{3}{T}_{n}$=$\frac{1}{3}+\frac{2}{{3}^{2}}$+…+$\frac{n-1}{{3}^{n-1}}+\frac{n}{{3}^{n}}$,
∴$\frac{2}{3}{T}_{n}$=1+$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n-1}}$-$\frac{n}{{3}^{n}}$=$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$-$\frac{n}{{3}^{n}}$=$\frac{3(1-\frac{1}{{3}^{n}})}{2}$-$\frac{n}{{3}^{n}}$=$\frac{3}{2}$-$\frac{3+2n}{2×{3}^{n}}$,
∴Tn=$\frac{9}{4}$-$\frac{3+2n}{4×{3}^{n-1}}$$<\frac{9}{4}$.
點(diǎn)評(píng) 本題考查了遞推式、等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | an=3•2n-1-2 | B. | an=3•2n-2 | C. | an=3•4n-1-2 | D. | an=3•2n+1-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}-1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$一l |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com