13.已知數(shù)列{an}的首項(xiàng)a1=$\frac{3}{5}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n∈N*
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$-1}為等比數(shù)列;
(2)記Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$,若Sn<100,求滿足條件的最大正整數(shù)n的值.

分析 (1)利用數(shù)列遞推式,變形可得得$\frac{1}{{{a_{n+1}}}}-1=\frac{1}{3}({\frac{1}{a_n}-1})$,從而可證數(shù)列$\left\{{\frac{1}{a_n}-1}\right\}$為等比數(shù)列;
(2)確定數(shù)列的通項(xiàng),利用等比數(shù)列的求和公式求和,即可求最大的正整數(shù)n.

解答 證明:(1)∵an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{2}{3}$+$\frac{1}{3{a}_{n}}$,
∴$\frac{1}{{{a_{n+1}}}}-1=\frac{1}{3}({\frac{1}{a_n}-1})$,
∵a1=$\frac{3}{5}$,
∴$\frac{1}{{a}_{1}}$-1=$\frac{2}{3}$,
∴$\left\{{\frac{1}{a_n}-1}\right\}$為以$\frac{2}{3}$為首項(xiàng),以$\frac{1}{3}$為公比的等比數(shù)列.
(2)由(1)知$\frac{1}{{a}_{n}}$-1=$\frac{2}{3}$×($\frac{1}{3}$)n-1,
∴$\frac{1}{{a}_{n}}$=2×($\frac{1}{3}$)n+1,
∴Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=n+2×($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$)=n+2×$\frac{\frac{1}{3}-\frac{1}{{3}^{n+1}}}{1-\frac{1}{3}}$=n+1-$\frac{1}{{3}^{n}}$,
∵Sn<100,
∴${S_n}=n+1-\frac{1}{3^n}<100$,
故nmax=99

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查等比數(shù)列的證明,考查等比數(shù)列的求和公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.若實(shí)數(shù)m,n為關(guān)于x的一元二次方程Ax2+Bx+C=0的兩個(gè)實(shí)數(shù)根,則有Ax2+Bx+C=A(x-m)(x-n),由系數(shù)可得:$m+n=-\frac{B}{A},且m•n=\frac{C}{A}$.設(shè)x1,x2,x3為關(guān)于x的方程f(x)=x3-ax2+bx-c=0,(a,b,c∈R)的三個(gè)實(shí)數(shù)根.
(1)寫(xiě)出三次方程的根與系數(shù)的關(guān)系;即x1+x2+x3=a;x1x2+x2x3+x3x1=b;x1•x2•x3=c
(2)若a,b,c均大于零,試證明:x1,x2,x3都大于零;
(3)若a∈Z,b∈Z,|b|<2,f(x)在x=α,x=β處取得極值,且-1<α<0<β<1,求方程f(x)=0三個(gè)實(shí)根兩兩不相等時(shí),實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.由“正三角形的內(nèi)切圓切于三邊的中點(diǎn)”可類(lèi)比猜想:“正四面體的內(nèi)切球切于四個(gè)面各正三角形的中心.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆安徽淮北十二中高三上月考二數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知命題關(guān)于的方程有解,命題單調(diào)遞增;若為真命題,是真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.袋中共有6個(gè)大小質(zhì)地完全相同的小球,其中有2個(gè)紅球、1個(gè)白球和3個(gè)黑球,從袋中任取兩球,至少有一個(gè)黑球的概率為(  )
A.$\frac{3}{4}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.給出下面類(lèi)比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集)
①“若a,b∈R,則a-b=0⇒a=b”類(lèi)比推出“若a,b∈C,則a-b=0⇒a=b”
②“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”
類(lèi)比推出“若a,b,c,d∈Q,則a+b$\sqrt{2}$=c+d$\sqrt{2}$?a=c,b=d”;
其中類(lèi)比結(jié)論正確的情況是( 。
A.①②全錯(cuò)B.①對(duì)②錯(cuò)C.①錯(cuò)②對(duì)D.①②全對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.由a1=1,d=3確定的等差數(shù)列{an},當(dāng)an=292時(shí),序號(hào)n等于98.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.一同學(xué)在電腦中打出如下若干個(gè)圓(圖中●表示實(shí)圓,○表示空心圓):
●○●●○●●●○●●●●○●●●●●○●●●●●●○
若將此若干個(gè)圓依次復(fù)制得到一系列圓,那么在前2003個(gè)圓中,有61個(gè)空心圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果(2x-y)+(x+3)i=0(x,y∈R),則x+y的值是( 。
A.18B.$\frac{1}{2}$C.3D.-9

查看答案和解析>>

同步練習(xí)冊(cè)答案