20.如圖所示的一塊長方體木料,E、F分別為底邊AB、BC的中點(diǎn),經(jīng)過平面A1B1C1D1上一點(diǎn)P,畫一條直線與直線EF平行,應(yīng)該怎樣畫線?

分析 連接A1C1,過P作A1C1的平行線l,則可得結(jié)論.

解答 解:連接A1C1,過P作A1C1的平行線l,則直線l與直線EF平行.

點(diǎn)評(píng) 本題考查直線與直線平行,考查學(xué)生的作圖能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2+alnx(a∈R,x∈[1,e]).
(1)若a=-4時(shí),求函數(shù)f(x)的最大值及相應(yīng)的x的值;
(2)討論方程f(x)=0的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.作一個(gè)以5cm為單位長度的圓,然后分別作出225°,330°角的正弦線,余弦線,正切線,量出它們的長度,從而寫出這些角的正弦值、余弦值、正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知△ABC中,AB=3,AC=$\sqrt{3}$,點(diǎn)G是△ABC的重心,$\overrightarrow{AG}$•$\overrightarrow{BC}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義在R上的函數(shù)f(x)=x2+2ax+7在(-∞,2]上是減函數(shù),且對(duì)任意的x1,x2∈[a+1,1],總有|f(x1)-f(x2)|≤21,則實(shí)數(shù)a的最大值與最小值之和是( 。
A.-4B.-5C.-6D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求下列函數(shù)的導(dǎo)數(shù).
(1)y=10;
(2)y=x10
(3)y=$\root{3}{{x}^{2}}$;
(4)y=$\frac{1}{\root{3}{{x}^{2}}}$;
(5)y=3x;
(6)y=log5x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,若A-B>70°,且sinAcosB=$\frac{\sqrt{3}}{2}$+cosAsinB,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知定點(diǎn)A(0,-4),O為坐標(biāo)原點(diǎn),以O(shè)A為直徑的圓O的方程是( 。
A.(x+2)2+y2=4B.(x+2)2+y2=16C.x2+(y+2)2=4D.x2+(y+2)2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的通項(xiàng)公式為an=$\frac{1}{\sqrt{5}}$[($\frac{1+\sqrt{5}}{2}$)n-($\frac{1-\sqrt{5}}{2}$)n],n∈N*.記Sn=C${\;}_{n}^{1}$a1+C${\;}_{n}^{2}$a2+…+C${\;}_{n}^{n}$an
(1)求S1,S2的值;
(2)求所有正整數(shù)n,使得Sn能被8整除.

查看答案和解析>>

同步練習(xí)冊(cè)答案