19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x-1,x<0}\\{lo{g}_{a}x,x>0}\end{array}\right.$(a>0且a≠1)的圖象上關(guān)于y軸對稱的點(diǎn)至少有3對,則實(shí)數(shù)a的范圍是( 。
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.($\frac{\sqrt{3}}{5}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

分析 求出函數(shù)f(x)=sin($\frac{π}{2}$x)-1,(x<0)關(guān)于y軸對稱的解析式,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:若x>0,則-x<0,∵x<0時(shí),f(x)=sin($\frac{π}{2}$x)-1,
∴f(-x)=sin(-$\frac{π}{2}$x)-1=-sin($\frac{π}{2}$x)-1,
則若f(x)=sin($\frac{π}{2}$x)-1,(x<0)關(guān)于y軸對稱,
則f(-x)=-sin($\frac{π}{2}$x)-1=f(x),即y=-sin($\frac{π}{2}$x)-1,x>0,
設(shè)g(x)=-sin($\frac{π}{2}$x)-1,x>0,作出函數(shù)g(x)的圖象,
要使y=-sin($\frac{π}{2}$x)-1,x>0與f(x)=logax,x>0的圖象至少有3個(gè)交點(diǎn),如圖,
則0<a<1且滿足g(5)<f(5),
即-2<loga5,即loga5>logaa-2,則5<$\frac{1}{{a}^{2}}$,解得0<a<$\frac{\sqrt{5}}{5}$,
故選:A.

點(diǎn)評 本題主要考查分段函數(shù)的應(yīng)用,作出函數(shù)關(guān)于y軸對稱的圖象,利用數(shù)形結(jié)合的思想是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知四邊形ABCD中,G為CD的中點(diǎn),則$\overrightarrow{AB}+\frac{1}{2}(\overrightarrow{BD}+\overrightarrow{BC})$等于(  )
A.$\overrightarrow{AG}$B.$\overrightarrow{CG}$C.$\overrightarrow{BC}$D.$\frac{1}{2}\overrightarrow{BC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知${a_{m-1}}+{a_{m+1}}-2a_m^2=0,{S_{2m-1}}=39$則m=( 。
A.38B.39C.20D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.不等式(x-2)(3-x)>0的解集是( 。
A.{x|x<2或x>3}B.{x|2<x<3}C.{x|x<2}D.{x|x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)$f(x)=2cos({ωx+\frac{π}{3}})$(ω>0)的最小正周期為π.
(1)求ω的值;
(2)記△A BC內(nèi)角 A,B,C的對邊分別為a,b,c,若$f({\frac{A}{2}-\frac{π}{6}})=1$,且$a=\frac{{\sqrt{3}}}{2}b$,求sin B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一枚質(zhì)地均勻的硬幣連擲3次,有且僅有2次出現(xiàn)正面向上的概率為( 。
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=alnx-x2
(1)當(dāng)a=2時(shí),求函數(shù)y=f(x)在[$\frac{1}{2}$,2]上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x)在區(qū)間(0,3)上為單調(diào)遞增函數(shù),求a的取值范圍;
(3)當(dāng)a=2時(shí),函數(shù)h(x)=f(x)-mx的圖象與x軸交于兩點(diǎn)A(x1,0),B(x2,0),且0<x1<x2,又h′(x)是h(x)的導(dǎo)函數(shù).若正常數(shù)α,β滿足條件α+β=1,β≥α.證明:h'(αx1+βx2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知過點(diǎn)M(2,0)的動直線l交拋物線y2=2x于A,B兩點(diǎn),則$\overrightarrow{OA}$•$\overrightarrow{OB}$的值為( 。
A.2B.0C.4D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線 $\left\{\begin{array}{l}{x=3-t}\\{y=4+t}\end{array}\right.$,(t 為參數(shù))上與點(diǎn) P(3,4)的距離等于 $\sqrt{2}$的點(diǎn)的坐標(biāo)是( 。
A.(4,3)B.(-4,5)或 (0,1)C.(2,5)D.(4,3)或 (2,5)

查看答案和解析>>

同步練習(xí)冊答案