4.一枚質地均勻的硬幣連擲3次,有且僅有2次出現(xiàn)正面向上的概率為( 。
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{3}{8}$

分析 利用n次獨立重復試驗中事件A恰好發(fā)生k次的概率計算公式能求出結果.

解答 解:一枚質地均勻的硬幣連擲3次,有且僅有2次出現(xiàn)正面向上的概率為:
p=${C}_{3}^{2}(\frac{1}{2})^{2}(\frac{1}{2})$=$\frac{3}{8}$.
故選:D.

點評 本題考查概率的求法,考查n次獨立重復試驗中事件A恰好發(fā)生k次的概率計算公式等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=x2-(a+1)x+a
(1)解關于x的不等式f(x)>0
(2)若當x∈(2,3)時,f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.將函數(shù)f(x)=sinωx(0<ω<6)圖象向右平移$\frac{π}{6}$個單位后得到函數(shù)g(x)的圖象.若g(x)圖象的一個對稱中心為($\frac{π}{2}$,0),則f(x)的最小正周期為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ax3+bx在x=2處取得極值為-16
(1)求a,b的值;
(2)若f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x-1,x<0}\\{lo{g}_{a}x,x>0}\end{array}\right.$(a>0且a≠1)的圖象上關于y軸對稱的點至少有3對,則實數(shù)a的范圍是( 。
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.($\frac{\sqrt{3}}{5}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程為4x-3y=0,則雙曲線的離心率為$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an}中,a1=1,${a_{n+1}}=\frac{a_n}{{1+3{a_n}}}$
(1)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)設數(shù)列{bn}滿足:${b_n}=\frac{2^n}{a_n}$,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=ax-lnx-1.
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上遞增,求實數(shù)a的取值范圍;
(2)求證:ln$\frac{n+1}{n}$<$\frac{1}{n}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設正弦曲線C按伸縮變換$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=3y}\end{array}\right.$后得到曲線方程為y′=sinx′,則正弦曲線C的周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

同步練習冊答案