18.甲、乙兩人輪流投籃,每人每次投一次籃,先投中者獲勝.投籃進行到有人獲勝或每人都已投球3次時結(jié)束.設(shè)甲每次投籃命中的概率為$\frac{2}{5}$,乙每次投籃命中的概率為$\frac{2}{3}$,且各次投籃互不影響.現(xiàn)由甲先投.
(1)求甲獲勝的概率;
(2)求投籃結(jié)束時甲的投籃次數(shù)X的分布列與期望.

分析 (1)由互斥事件概率加法公式和相互獨立事件概率乘法公式能求出甲獲勝的概率.
(2)由題意知投籃結(jié)束時甲的投籃次數(shù)X的可能取值為1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.

解答 解:(1)由題意甲獲勝的概率:
p=$\frac{2}{5}+\frac{3}{5}×\frac{1}{3}×\frac{2}{5}$+$\frac{3}{5}×\frac{1}{3}×\frac{3}{5}×\frac{1}{3}×\frac{2}{5}$=$\frac{62}{125}$.
(2)由題意知投籃結(jié)束時甲的投籃次數(shù)X的可能取值為1,2,3,
P(X=1)=$\frac{2}{5}+\frac{3}{5}×\frac{2}{3}$=$\frac{4}{5}$,
P(X=2)=$\frac{3}{5}×\frac{1}{3}×\frac{2}{5}+\frac{3}{5}×\frac{1}{3}×\frac{3}{5}×\frac{2}{3}$=$\frac{4}{25}$,
P(X=3)=$\frac{3}{5}×\frac{1}{3}×\frac{3}{5}×\frac{1}{3}×\frac{2}{5}$+$\frac{3}{5}×\frac{1}{3}×\frac{3}{5}×\frac{1}{3}×\frac{3}{5}×\frac{2}{3}$+$\frac{3}{5}×\frac{1}{3}×\frac{3}{5}×\frac{1}{3}×\frac{3}{5}×\frac{1}{3}$=$\frac{1}{25}$,
∴X的分布列為:

 X 1 2 3
 P $\frac{4}{5}$ $\frac{4}{25}$ $\frac{1}{25}$
EX=$1×\frac{4}{5}+2×\frac{4}{25}+3×\frac{1}{25}$=$\frac{31}{25}$.

點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,注意互斥事件概率加法公式和相互獨立事件概率乘法公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+1|+|x-2|.
(1)在給出的直角坐標系中畫出y=f(x)的圖象;
(2)解不等式f(x)≥5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=x2的圖象按向量$\overrightarrow{a}$平移后所得函數(shù)的解析式是y=(x-1)2+2,則$\overrightarrow{a}$=(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.平面直角坐標系xOy中,已知點A(2,1),B(4,-2),C(7,0),證明:△ABC是等腰直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.判斷命題“A∩C=B∩C,則A=B“的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.求下列函數(shù)的導函數(shù):
(1)y=sinx(cosx+1)
(2)y=$\frac{lnx}{x}$
(3)y=1g$\frac{{x}^{2}+1}{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.求函數(shù)y=3|x-2|的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.定義在R上的奇函數(shù)f(x)滿足:當x>0時,f(x)=2015x+log2015x,則在R上,函數(shù)f(x)零點的個數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合M={x|y=lnx},N={x|2x≤8},則M∩N=( 。
A.B.{x|0<x≤3}C.{x|x≤3}D.{x|x<3}

查看答案和解析>>

同步練習冊答案