8.在平面直角坐標(biāo)系中,直線x-2y+1=0被圓(x-2)2+(y+1)2=9截得的弦長(zhǎng)為4.

分析 求出已知圓的圓心為C,半徑r.利用點(diǎn)到直線的距離公式,算出點(diǎn)C到直線直線l的距離d,由垂徑定理加以計(jì)算,可得直線x-2y+1=0被圓截得的弦長(zhǎng).

解答 解:圓(x-2)2+(y+1)2=9的圓心為C(2,-1),半徑r=3,
∵點(diǎn)C到直線直線x-2y+1=0的距離d=$\frac{|2+2+1|}{\sqrt{1+4}}$=$\sqrt{5}$,
∴根據(jù)垂徑定理,得直線x-2y+1=0被圓(x-2)2+(y+1)2=9截得的弦長(zhǎng)為2$\sqrt{{r}^{2}-gx1hyo9^{2}}$=2×2=4
故答案為:4.

點(diǎn)評(píng) 本題給出直線與圓的方程,求直線被圓截得的弦長(zhǎng),著重考查點(diǎn)到直線的距離公式、圓的方程和直線與圓的位置關(guān)系等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.把一個(gè)圓錐截成圓臺(tái),已知圓臺(tái)的上、下底面半徑的比是1:2,母線長(zhǎng)10cm.圓臺(tái)側(cè)面展開(kāi)是一個(gè)$\frac{1}{4}$圓環(huán),求:
(1)圓錐的母線長(zhǎng);
(2)求圓臺(tái)的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=x2-(a+1)x-4(a+5),g(x)=ax2-(3a+1)x+3,其中a<0.若存在正整數(shù)m、n,當(dāng)x0∈(m,n)時(shí),有f(x0)<0,g(x0)>0同時(shí)成立,則m+n的值為( 。
A.5B.7C.9D.7或8或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.a(chǎn)1=2,an+1=an+ln(1+$\frac{1}{n}$),an=2+lnn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知log23=a,log25=b,求log245.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x+$\frac{9}{x}$.
(1)判斷并證明f(x)在(3,+∞)上的單調(diào)性;
(2)求函數(shù)f(x)在[6,9]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.計(jì)算:
(1)2lg2+lg25;
(2)3${\;}^{1+lo{g}_{3}2}$;
(3)3log22+log2$\sqrt{2}$;
(4)lg60-lg6;
(5)log280-log24-log25;
(6)log3$\frac{27}{5}$+log325-log35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$).
(1)若函數(shù)定義在(0,$\frac{π}{2}$)上,求函數(shù)的值域;
(2)若函數(shù)定義在R上,求不等式f(x)≥0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知某幾何體的三視圖如圖所示,其中俯視圖是一個(gè)邊長(zhǎng)為2的正方形切去了四個(gè)以頂點(diǎn)為圓心1為半徑的四分之一圓,則該幾何體的表面積為8+2π.

查看答案和解析>>

同步練習(xí)冊(cè)答案