分析 (1)連接BD,根據(jù)∠A:∠ABC:∠C:∠ADC=3:7:4:10,求出C的度數(shù),在三角形BCD中,利用余弦定理即可求出BD的長(zhǎng);
(2)利用勾股定理的逆定理求出∠CBD為直角,進(jìn)而求出∠ABD的度數(shù),得到∠BDA的度數(shù),在三角形ABD中,利用正弦定理求出AB的長(zhǎng)即可.
解答 解:(1)連結(jié)BD,由題意得∠A=45°,∠ABC=105°,∠C=60°,∠ADC=150°,
在△BCD中,由余弦定理得:BD2=BC2+CD2-2BC•CDcosC=4+16-8=12,
解得:BD=2$\sqrt{3}$.
(2)∵BD2+BC2=CD2,
∴∠CBD=90°,
∴∠ABD=15°,
∴∠BDA=120°,
在△ABD中,由正弦定理$\frac{AB}{sin∠ADB}$=$\frac{BD}{sinA}$,
則AB=$\frac{BD•sin∠ADB}{sinA}$=$\frac{2\sqrt{3}×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=3$\sqrt{2}$.
點(diǎn)評(píng) 此題考查了正弦、余弦定理,以及三角形面積公式在解三角形中的應(yīng)用,考查了計(jì)算能力和數(shù)形結(jié)合思想,熟練掌握定理及公式是解本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{1}{e}$,2e] | B. | [$\frac{1}{e}$,$\frac{2}{e}$] | C. | [$\frac{3}{e}$,2e] | D. | [$\frac{3}{e}$,$\frac{8}{{e}^{2}}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=2sin($\frac{π}{4}$x-$\frac{π}{4}$)+7(1≤x≤12,x∈N+) | B. | f(x)=9sin($\frac{π}{4}$x-$\frac{π}{4}$)+7(1≤x≤12,x∈N+) | ||
C. | f(x)=2$\sqrt{2}$sin$\frac{π}{4}$x+7(1≤x≤12,x∈N+) | D. | f(x)=2sin($\frac{π}{4}$x+$\frac{π}{4}$)+7(1≤x≤12,x∈N+) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com