【題目】對于項數為()的有窮正整數數列,記(),即為中的最大值,稱數列為數列的“創(chuàng)新數列”.比如的“創(chuàng)新數列”為.
(1)若數列的“創(chuàng)新數列”為1,2,3,4,4,寫出所有可能的數列;
(2)設數列為數列的“創(chuàng)新數列”,滿足(),求證: ();
(3)設數列為數列的“創(chuàng)新數列”,數列中的項互不相等且所有項的和等于所有項的積,求出所有的數列.
【答案】(1)見解析;(2)見解析;(3)
【解析】試題分析:(1)創(chuàng)新數列為1,2,3,4,4的所有數列,可知其首項是1,第二項是2,第三項是3,第四項是4,第五項是1或2或3或4,可寫出;(2)由題意易得, ,從而可得,整理即證得結論;(3)驗證當時,不滿足題意,當時,根據而得,同理, ,而當時不滿足題意.
試題解析:(1)所有可能的數列為; ; ;
(2)由題意知數列中. 又,所以 ,所以,即()
(3)當時,由得,又所以,不滿足題意;當時,由題意知數列中,又
當時此時, 而,所以等式成立;
當時此時, 而,所以等式成立;
當, 得,此時數列為.
當時, ,而,所以不存在滿足題意的數列.綜上數列依次為.
科目:高中數學 來源: 題型:
【題目】已知圓O:x2+y2=2,直線.l:y=kx-2.
(1)若直線l與圓O相切,求k的值;
(2)若直線l與圓O交于不同的兩點A,B,當∠AOB為銳角時,求k的取值范圍;
(3)若,P是直線l上的動點,過P作圓O的兩條切線PC,PD,切點為C,D,探究:直線CD是否過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現這兩名學生在相同條件下各射箭10次,命中的環(huán)數如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環(huán)數的平均數和標準差;
(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記,其中為函數的導數若對于,,則稱函數為D上的凸函數.
求證:函數是定義域上的凸函數;
已知函數,為上的凸函數.
求實數a的取值范圍;
求函數,的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量
(1)若分別表示將一枚質地均勻的正方體骰子(六個面的點數分別為1,2,3,4,5,6)先后拋擲兩次時第一次,第二次出現的點數,求滿足的概率;
(2)若在連續(xù)區(qū)間[1,6]上取值,求滿足的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班同學利用國慶節(jié)進行社會實踐,對歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數頻率分布直方圖:
組數 | 分組 | 低碳族的人數 | 占本組的頻率 |
第一組 | 120 | 0.6 | |
第二組 | 195 | ||
第三組 | 100 | 0.5 | |
第四組 | 0.4 | ||
第五組 | 30 | 0.3 | |
第六組 | 15 | 0.3 |
(1)補全頻率分布直方圖并求、、的值;
(2)從歲年齡段的“低碳族”中采用分層抽樣法抽取18人參加戶外低碳體驗活動,如何抽取?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的部分圖象如圖所示,且相鄰的兩個最值點的距離為.
(1)求函數的解析式;
(2)若將函數的圖象向左平移1個單位長度后得到函數的圖象,關于的不等式在上有解,求的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com