17.若cos65°=a,則sin25°的值是( 。
A.-aB.aC.$\sqrt{1-{a}^{2}}$D.-$\sqrt{1-{a}^{2}}$

分析 直接利用誘導(dǎo)公式化簡求解即可.

解答 解:sin25°=sin(90°-65°)=cos65°=a,
故選:B.

點評 本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)的化簡求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,則f(f(8))=log23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}滿足a1=20,an+1=an-2(n∈N*),則當(dāng)數(shù)列{an}的前n項和Sn取得最大值時,n的值為10或11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.甲,乙兩人從相距18千米的兩地同時出發(fā),相向而行$\frac{9}{5}$小時相遇.如果甲比乙先出發(fā)$\frac{2}{3}$小時,那么乙出發(fā)后$\frac{3}{2}$小時兩人相遇.求:兩人的速度各是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知sin(π+α)=-$\frac{1}{2}$,計算:
(1)sin(5π-α):
(2)sin(α-3π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若sin(270°+θ)=2cos(90°+θ),則cos2θ+sinθcosθ-sin2θ的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題中真命題的個數(shù)是(  )
①已知非零向量$\overrightarrow{a}$,$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|必大于|$\overrightarrow{a}$|與|$\overrightarrow$|中任意一個;
②若$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$,則A,B,C為三角形的三個頂點;
③設(shè)$\overrightarrow{a}$≠$\overrightarrow{0}$,若$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow$),則$\overrightarrow{a}$∥$\overrightarrow$;
④若|$\overrightarrow{a}$|-|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow$=$\overrightarrow{0}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=log2($\sqrt{{x}^{2}+1}$+x)
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求證:函數(shù)f(x)在[0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A中元素(x,y)在映射f 下對應(yīng)B中元素(x+y,x-y),則B中元素(4,-2)在A中對應(yīng)的元素為(  )
A.(1,3)B.( 1,6)C.(2,4)D.(2,6)

查看答案和解析>>

同步練習(xí)冊答案