2.若sin(270°+θ)=2cos(90°+θ),則cos2θ+sinθcosθ-sin2θ的值為1.

分析 由誘導(dǎo)公式可將已知條件化為cosθ=2sinθ,再結(jié)合cos2θ+sin2θ=1即可解出cos2θ,sin2θ,sinθcosθ,從而得出答案.

解答 解:∵sin(270°+θ)=2cos(90°+θ),
∴-cosθ=-2sinθ,即cosθ=2sinθ,
∵cos2θ+sin2θ=1,
∴cos2θ=$\frac{4}{5}$,
sin2θ=$\frac{1}{5}$,
sinθcosθ=2sin2θ=$\frac{2}{5}$.
∴cos2θ+sinθcosθ-sin2θ=$\frac{4}{5}$+$\frac{2}{5}$-$\frac{1}{5}$=1.
故答案為:1.

點(diǎn)評(píng) 本題考查了三角函數(shù)的誘導(dǎo)公式及同角三角函數(shù)的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|x2-4x-5<0},B={x|2<x<4},則A∩B=( 。
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$.
(1)求f($\frac{1}{2}$)和f(2)和f($\frac{1}{3}$)+f(3)的值;
(2)通過(guò)(1)的計(jì)算你能歸納出一般結(jié)論嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知橢圓x2+$\frac{{y}^{2}}{9}$=1的上、下兩個(gè)焦點(diǎn)分別為F,F(xiàn)′.G是橢圓上任意一點(diǎn),已知橢圓的上頂點(diǎn)為A.下頂點(diǎn)為A′.左頂點(diǎn)為B.右頂點(diǎn)為B′.若點(diǎn)M為AB的中點(diǎn).則|GM|+|GF′|的最大值( 。
A.6+$\sqrt{3}$B.6-$\sqrt{3}$C.6+$\frac{\sqrt{42-24\sqrt{2}}}{2}$D.6-$\frac{\sqrt{42-24\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若cos65°=a,則sin25°的值是( 。
A.-aB.aC.$\sqrt{1-{a}^{2}}$D.-$\sqrt{1-{a}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.以雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的右焦點(diǎn)為圓心,并與其漸近線相切的圓的標(biāo)準(zhǔn)方程是(x-5)2+y2=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在四棱錐O-ABCD中,底面ABCD為平行四邊形,M為OA的中點(diǎn),N為BC的中點(diǎn),求證:MN∥平面OCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)$f(x)=-\frac{1}{2}{({x-2})^2}+alnx$在(1,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A..[-1,+∞)B.(-∞,-1]C.(1,+∞)D..(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x2+2x|x-a|,其中a∈R.
(1)當(dāng)a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若不等式f(x)≥3在x∈[1,3]上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案