【題目】已知圓A:(x+22+y232,過B2,0)且與圓A相切的動(dòng)圓圓心為P

1)求點(diǎn)P的軌跡E的方程;

2)設(shè)過點(diǎn)A的直線l1交曲線EQ、S兩點(diǎn),過點(diǎn)B的直線l2交曲線ER、T兩點(diǎn),且l1l2,垂足為WQS、R、T為不同的四個(gè)點(diǎn)),求四邊形QRST的面積的最小值.

【答案】1;(2

【解析】

1)設(shè)動(dòng)圓半徑為r,由于點(diǎn)B在圓A內(nèi),所以圓P與圓A內(nèi)切,計(jì)算可得|PA|+|PB|4|AB|4,可得點(diǎn)P符合橢圓的定義,可得其軌跡的方程;

2)若l1l2的斜率不存在,四邊形QRST的面積為8,若兩條直線的斜率都存在,設(shè)直線l1的斜率為k,則直線l1的方程為ykx+2),聯(lián)立直線與橢圓,設(shè)點(diǎn)Qx1,y1),點(diǎn)Sx2,y2),可得 ,,可得|QS|的值,同理可得|RT|,由SQRST|QS||RT|,利用基本不等式可得其最小值.

解:(1)設(shè)動(dòng)圓半徑為r,由于點(diǎn)B在圓A內(nèi),所以圓P與圓A內(nèi)切,

|PA|4r,|PB|r,

|PA|+|PB|4|AB|4,

∴點(diǎn)P的軌跡是以A,B為焦點(diǎn)的橢圓,其中a2,c2

b2a2c24,

∴點(diǎn)P的軌跡E的方程為:;

2)若l1l2的斜率不存在,四邊形QRST的面積為8,

若兩條直線的斜率都存在,設(shè)直線l1的斜率為k,則直線l1的方程為ykx+2),

聯(lián)立方程,得(1+2k2x2+8k2x+8k280,

設(shè)點(diǎn)Qx1,y1),點(diǎn)Sx2,y2),

,

|QS|4,

同理可得|RT|4,

SQRST|QS||RT|,當(dāng)且僅當(dāng)2k2+1k2+2,即k±1時(shí)等號成立,

綜上所述,當(dāng)k±1時(shí),四邊形QRST的面積取到最小值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】成書于公元一世紀(jì)的我國經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,題目是:“今有池方一丈,點(diǎn)生其中央,出水一尺,引葭趕岸,適馬岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈(10尺),有棵蘆葦長在它的正中央,高出水面部分有1尺長,把蘆葦拉向岸邊,恰好碰到沿岸(池塘一邊的中點(diǎn)),則水深為__________尺,蘆葦長__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C)的上頂點(diǎn)為,離心率為.

1)求橢圓C的方程;

2)若過點(diǎn)A作圓(圓在橢圓C內(nèi))的兩條切線分別與橢圓C相交于B,D兩點(diǎn)(BD不同于點(diǎn)A),當(dāng)r變化時(shí),試問直線BD是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進(jìn)行統(tǒng)計(jì),得到如下人數(shù)分布表.

購買金額(元)

人數(shù)

10

15

20

15

20

10

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購買金額是否少于60元與性別有關(guān).

不少于60

少于60

合計(jì)

40

18

合計(jì)

2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎(jiǎng)3次,每次中獎(jiǎng)概率為(每次抽獎(jiǎng)互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎(jiǎng)1次減5元,中獎(jiǎng)2次減10元,中獎(jiǎng)3次減15.若游客甲計(jì)劃購買80元的土特產(chǎn),請列出實(shí)際付款數(shù)(元)的分布列并求其數(shù)學(xué)期望.

附:參考公式和數(shù)據(jù):,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班AB兩名學(xué)生六次數(shù)學(xué)測驗(yàn)成績(百分制)如圖所示:

A同學(xué)成績的中位數(shù)大于B同學(xué)成績的中位數(shù);

A同學(xué)的平均分比B同學(xué)高;

A同學(xué)的平均分比B同學(xué)低;

A同學(xué)成績方差小于B同學(xué)的方差,

以上說法中正確的是(

A.③④B.①②④C.②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進(jìn)行統(tǒng)計(jì),得到如下人數(shù)分布表.

購買金額(元)

人數(shù)

10

15

20

15

20

10

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購買金額是否少于60元與性別有關(guān).

不少于60

少于60

合計(jì)

40

18

合計(jì)

2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎(jiǎng)3次,每次中獎(jiǎng)概率為(每次抽獎(jiǎng)互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎(jiǎng)1次減5元,中獎(jiǎng)2次減10元,中獎(jiǎng)3次減15.若游客甲計(jì)劃購買80元的土特產(chǎn),請列出實(shí)際付款數(shù)(元)的分布列并求其數(shù)學(xué)期望.

附:參考公式和數(shù)據(jù):,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.

若該省從121日至224日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項(xiàng)和為,則下列說法中正確的是(

A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列

C.數(shù)列的最大項(xiàng)是D.數(shù)列的最大項(xiàng)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“!弊帧①N春聯(lián)、掛燈籠等方式來表達(dá)對新年的美好祝愿,某商家在春節(jié)前開展商品促銷活動(dòng),顧客凡購物金額滿50元,則可以從“福”字、春聯(lián)和燈籠這三類禮品中任意免費(fèi)領(lǐng)取一件,若有4名顧客都領(lǐng)取一件禮品,則他們中有且僅有2人領(lǐng)取的禮品種類相同的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中,為自然對數(shù)的底數(shù).

1)求函數(shù)的最小值;

2)若對于任意的,都存在唯一的,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案