【題目】已知函數(shù),.

(1)函數(shù),,求函數(shù)的最小值;

(2)對任意,都有成立,求的范圍.

【答案】(1)見解析(2)

【解析】試題分析:

(1)由題意知.,得.分三種情形討論即可求解.

(2)設(shè),則對任意,都有成立.由 ,對分三種情形討論,需要再次對導(dǎo)函數(shù)求導(dǎo),難度較大.

試題解析:(I).

,令.

當(dāng)時,在遞增,

的最小值為.

當(dāng)時,在,為減函數(shù),在在,為增函數(shù).

的最小值為.

當(dāng)時,在,遞減,的最小值為

.

綜上所述,當(dāng)的最小值為,當(dāng)的最小值為,當(dāng)時,最小值為.

(II)設(shè)

.

①當(dāng)時,在,遞增,的最小值為,不可能有.

②當(dāng)時, 令,解得:,此時

.∴上遞減.∵的最大值為,∴遞減.∴的最大值為,

成立.

當(dāng)時,此時當(dāng)時,

遞增,當(dāng)時,遞減.

,又由于,

∴在,遞增,

又∵,所以在,顯然不合題意.

綜上所述:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家擬在2010年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬件與年促銷費(fèi)用m萬元(m≥0)滿足x=3﹣ (k為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知2010年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2010年該產(chǎn)品的利潤y萬元表示為年促銷費(fèi)用m萬元的函數(shù);
(2)該廠家2010年的促銷費(fèi)用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,F1,F2分別是橢圓C的左、右焦點(diǎn),A是橢圓C的頂點(diǎn),B是直線AF2與橢圓C的另一個交點(diǎn)F1AF2=60°.

(1)求橢圓C的離心率;

(2)已知△AF1B的面積為40a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ< )圖象如圖,P是圖象的最高點(diǎn),Q為圖象與x軸的交點(diǎn),O為原點(diǎn).且|OQ|=2,|OP|= ,|PQ|=

(1)求函數(shù)y=f(x)的解析式;
(2)將函數(shù)y=f(x)圖象向右平移1個單位后得到函數(shù)y=g(x)的圖象,當(dāng)x∈[0,2]時,求函數(shù)h(x)=f(x)g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率是,且過點(diǎn).直線與橢圓相交于兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)求的面積的最大值;

(Ⅲ)設(shè)直線 分別與軸交于點(diǎn) .判斷, 大小關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2 ,四邊形BDEF是平行四邊形,BD與AC交于點(diǎn)G,O為GC的中點(diǎn),且FO⊥平面ABCD,F(xiàn)O=

(1)求BF與平面ABCD所成的角的正切值;
(2)求三棱錐O﹣ADE的體積;
(3)求證:平面AEF⊥平面BCF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)定義域為,如果存在非實數(shù)對任意的都有,則稱函數(shù)是“似周期函數(shù)”,非零常數(shù)為函數(shù)的似周期.現(xiàn)有下列四個關(guān)于“似周期函數(shù)”的命題:

①如果“似周期函數(shù)”的“似周期”為,那么它是周期為的周期函數(shù);

②函數(shù)是“似周期函數(shù)”;

③函數(shù)是“似周期函數(shù)”;

④如果函數(shù)是“似周期函數(shù)”.那么”

其中是真命題的序號是____.(請?zhí)顚懰袧M足條件的命題序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得 =80, =20, i=184, =720.

(1)求家庭的月儲蓄y對月收入x的線性回歸方程

(2)判斷變量xy之間是正相關(guān)還是負(fù)相關(guān);

(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.

附:線性回歸方程中, ,其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中點(diǎn).
(Ⅰ)求證:AC⊥B1C;
(Ⅱ)求證:AC1∥平面B1CD

查看答案和解析>>

同步練習(xí)冊答案