分析 (1)求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)函數(shù)的值,求出a即可.
(2)函數(shù)y=f(x)-xex+x2的圖象在直線y=-x-1的下方等價(jià)于即要證lnx-ex+1<0,構(gòu)造函數(shù)利用函數(shù)的導(dǎo)數(shù)以及函數(shù)的極值求解函數(shù)的最值,然后判斷結(jié)果即可.
解答 (1)解:對(duì)f(x)求導(dǎo),得f'(x)=1+lnx+2ax,f'(1)=1+2a=-1,得a=-1,f(x)=xlnx-x2-1.…(5分)
(2)證明:“函數(shù)y=f(x)-xex+x2的圖象在直線y=-x-1的下方”等價(jià)于即要證lnx-ex+1<0,
所以只要證h(x)=lnx-ex+1,$h'(x)=\frac{1}{x}-{e^x}$,
x趨于0時(shí),h'(x)>0,存在一個(gè)極值x0∈(0,1)使得${e^{x_0}}=\frac{1}{x_0}$等價(jià)于$h(x)=ln{x_0}-\frac{1}{x_0}+1\;\;(0<{x_0}<1)$,
所以h(x)<0
故函數(shù)y=f(x)-xex+x2的圖象在直線y=-x-1的下方.…12分.
點(diǎn)評(píng) 本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,轉(zhuǎn)化思想以及計(jì)算能力,構(gòu)造法的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | ($\frac{1}{e}$,e) | C. | ($\frac{1}{4}$,e) | D. | ($\frac{1}{4}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | x | 5 |
等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 3 | y |
男生 | 女生 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) |
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com