若a⊆α,b⊆α,a∩b=M,c⊆β,d⊆β,c∩d=N,a∥c,b∥d,求證:α∥β.
考點(diǎn):平面與平面平行的判定
專題:空間位置關(guān)系與距離
分析:首先利用線面平行的判定定理得到a∥β,b∥β,然后利用面面平行的判定定理,得證.
解答: 證明:如圖

∵a⊆α,b⊆α,c⊆β,d⊆β,c∩d=N,a∥c,
∴a∥β,b∥β,(線面平行的判定定理)
∵a∩b=M,a⊆α,b⊆α,
∴α∥β(面面平行的判定定理).
點(diǎn)評(píng):本題考查了線面平行的判定定理和面面平行的判定定理的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=3i-4j,
OB
=6i-3j,
OC
=(5-m)i-(3+m)j,其中i,j分別是平面直角坐標(biāo)系內(nèi)x軸與y軸正方向上的單位向量.
(1)若點(diǎn)A,B,C能構(gòu)成三角形,求實(shí)數(shù)m應(yīng)滿足的條件;
(2)對(duì)任意m∈[1,2],不等式
AC
2≤-x2+x+3恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC中,M、N、K分別是△PAB,△PBC,△PAC的重心,S△ABC=18.
(1)求證:MN
.
1
3
AC;
(2)求S△MNK

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
0
(-
4-x2
-1)dx=( 。
A、πB、-π
C、π+2D、-π-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-
1+cos2x
2
-
1
2
,若x∈[
π
4
,
π
2
],求函數(shù)f(x)的最值及對(duì)應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四邊形ABCD中,AB=BC=CD=1,且∠B=90°,∠BCD=135°,記向量
AB
=
a
,
AC
=
b
,則
AD
=( 。
A、
2
a
-(1+
2
2
b
B、-
2
a
+(1+
2
2
b
C、-
2
a
+(1-
2
2
b
D、
2
a
+(1-
2
2
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)
a
=
2
BC
|
BC
|
,
b
=
3
CA
|
CA
|
c
=
4
AB
|
AB
|
.若表示
a
、
b
c
的有向線段首尾相連能構(gòu)成三角形,則△ABC的形狀是( 。
A、等腰三角形
B、直角三角形
C、鈍角三角形
D、銳角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=
1
8
x2的一條切線的斜率為
1
2
,則切點(diǎn)的橫坐標(biāo)為( 。
A、4
B、3
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)+k(A>0,ω>0,|φ|<
π
2
),在同一周期內(nèi)的最高點(diǎn)是(2,2),最低點(diǎn)是(8,-4),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案