分析 取BD中點(diǎn)O,連結(jié)EO、FO,推導(dǎo)出EO∥CD,且|EO|=1,F(xiàn)O∥AB,且|FO|=$\frac{1}{2}$,∠EOF(或其補(bǔ)角)是異面直線AB與CD所成的角,由此能求出EF.
解答 解:取BD中點(diǎn)O,連結(jié)EO、FO,
∵四面體ABCD中,|AB|=1,|CD|=2,E、F分別為BC、AD的中點(diǎn),且異面直線AB與CD所成的角為60°,
∴EO∥CD,且|EO|=1,F(xiàn)O∥AB,且|FO|=$\frac{1}{2}$,
∴∠EOF(或其補(bǔ)角)是異面直線AB與CD所成的角,
∴∠EOF=60°或120°,
∴∠EOF=60°,EF=$\sqrt{\frac{1}{4}+1-2×\frac{1}{2}×1×\frac{1}{2}}$=$\frac{\sqrt{3}}{2}$,
∠EOF=120°,EF=$\sqrt{\frac{1}{4}+1+2×\frac{1}{2}×1×\frac{1}{2}}$=$\frac{\sqrt{7}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$或$\frac{{\sqrt{7}}}{2}$.
點(diǎn)評(píng) 本題考查線段長(zhǎng)的求法,考查空間角,考查余弦定理的運(yùn)用,不要漏掉一種情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ab>a2 | B. | a2<b2 | C. | $\frac{1}{a}$<$\frac{1}$ | D. | $-\frac{1}{a}<-\frac{1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,+∞) | C. | (-1,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4$\sqrt{2}$ | C. | 6 | D. | 2$\sqrt{10}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com