f(x)=cos(
2
-x)
cos(π+x)是( 。
A、最小正周期為π的奇函數(shù)
B、最小正周期為π的偶函數(shù)
C、最小正周期為
π
2
的奇函數(shù)
D、最小正周期為
π
2
的偶函數(shù)
考點:二倍角的正弦,運(yùn)用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用誘導(dǎo)公式化簡函數(shù)的解析式為f(x)=
1
2
sin2x,再根據(jù)正弦函數(shù)的周期性和奇偶性,得出結(jié)論.
解答: 解:由于f(x)=cos(
2
-x)
cos(π+x)=-sinx•(-cosx)=
1
2
sin2x,
可得函數(shù)為奇函數(shù),且它的周期為
2
=π,
故選:A.
點評:本題主要考查正弦函數(shù)的周期性和奇偶性,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,B(-
5
,0)、C(
5
,0),AB、AC邊上的中線長之和為9.
(Ⅰ)求△ABC重心G的軌跡方程
(Ⅱ)設(shè)P為(1)中所求軌跡上任意一點,求cos∠BPC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l的法向量
n
=(1 , 2)
,且經(jīng)過點M(0,1),則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某地一天從6~14時的溫度變化曲線近似滿足y=Asin(ωx+φ)+b(A>0,ω>0,|φ|<π,b∈R),寫出這段曲線的函數(shù)解析式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(
6
-α)
=
1
3
,則cos(
π
3
+α)
的值為( 。
A、-
2
2
3
B、
2
2
3
C、
1
3
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=
sin(α-3π)cos(2π-α)•sin(-α+
3
2
π)
cos(-π-α)sin(-π-α)

(1)化簡f(α);
(2)若α是第三象限角,且cos(α-
3
2
π)=
1
5
,求f(α)的值.
(3)若α=-
31π
3
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)求值:sin
25π
6
+cos
3
+tan(-
4
);
(Ⅱ)已知log23=a,log37=b,試用a,b表示log1456.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=3,an+1=
an-1
an+1
(n∈N*),Tn為數(shù)列{an}的前n項之積,則T2010=( 。
A、
3
2
B、-
1
6
C、
2
3
D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2
1
2
(ωx+φ)-2
3
sin
1
2
(ωx+φ)cos
1
2
(ωx+φ)(ω>0.0<φ<
π
2
)其圖象的兩個相鄰對稱中心的距離為
π
2
,且過點(-
π
6
,2).
(Ⅰ)函數(shù)f(x)的達(dá)式;
(Ⅱ)若f(
α
2
-
π
6
)=
1
2
,α是第三象限角,求cosα的值.

查看答案和解析>>

同步練習(xí)冊答案