已知f(α)=
sin(α-3π)cos(2π-α)•sin(-α+
3
2
π)
cos(-π-α)sin(-π-α)

(1)化簡f(α);
(2)若α是第三象限角,且cos(α-
3
2
π)=
1
5
,求f(α)的值.
(3)若α=-
31π
3
,求f(α)的值.
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:(1)利用誘導(dǎo)公式化簡函數(shù)的表達式,即可.
(2)通過誘導(dǎo)公式求出sinα,然后求解f(α)的值.
(3)把角代入函數(shù)的表達式,求解即可.
解答: 解:(1)f(α)=
sin(α-3π)cos(2π-α)•sin(-α+
3
2
π)
cos(-π-α)sin(-π-α)

=-
sinαcosα•cosα
cosαsinα

=-cosα.
(2)cos(α-
3
2
π)=
1
5
,∴sinα=-
1
5

∵α是第三象限角,
∴cosα=-
1-sin2α
=
2
6
5

(3)α=-
31π
3
,
則f(α)=-cos(-
31π
3
)
=-cos
31π
3
=-cos
π
3
=-
1
2
點評:本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)的化簡求值,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x,y的不等式組
3x-y+1>0
x+3m<0
y-m>0
表示的平面區(qū)域內(nèi)存在點P(x0,y0),滿足x0-3y0=3,求得m的取值范圍是( 。
A、(-∞,-
1
3
B、(-∞,
1
3
C、(-∞,-
1
2
D、(-∞,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義在R上的函數(shù),對任意實數(shù)x、y滿足f(x)+f(y-x)=f(y),且當x>0時,f(x)<0.若對任意t∈(1,2),f(tx2-2x)<f(t+2)恒成立,求x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin840°等于(  )
A、-
1
2
B、
3
2
C、-
3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=cos(
2
-x)
cos(π+x)是(  )
A、最小正周期為π的奇函數(shù)
B、最小正周期為π的偶函數(shù)
C、最小正周期為
π
2
的奇函數(shù)
D、最小正周期為
π
2
的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3x
,若f′(a)=-
16
3
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的方程4x-2x+1-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是R上的奇函數(shù),且當x∈(0,+∞)時,f(x)=x(1-
3x
),則f(0)=
 
;f(-8)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
、
c
滿足|
a
|=|
b
|=3,
a
b
=
3
2
,|
c
-
a
-
b
|=1,則|
c
|的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案