函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出函數(shù)的導(dǎo)數(shù),令導(dǎo)函數(shù)大于0,解不等式求出即可.
解答: 解:∵f′(x)=(x-2)ex
令f′(x)>0,解得:x>2,
∴f(x)在(2,+∞)遞增,
故答案為:(2,+∞).
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
3
3x+
3
,利用課本中推導(dǎo)等差數(shù)列前n項(xiàng)和的公式的方法,可求得:f(-12)+f(-11)+f(-10)+…+f(11)+f(12)+f(13)的值( 。
A、11B、14C、12D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)一種產(chǎn)品需要固定成本2萬元,又每生產(chǎn)100臺(tái)該產(chǎn)品還需要增加成本0.5萬元,根據(jù)市場調(diào)查,市場上每年可銷售這種產(chǎn)品500臺(tái),已知年產(chǎn)量x(百臺(tái))與銷售收入M(x)(萬元)的函數(shù)關(guān)系如下:M(x)=
4x-
1
2
x2
(0≤x≤5)
15
2
(x>5)
,試問:當(dāng)產(chǎn)量為多少時(shí),工人的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“直線x+y-a=0與圓(x-1)2+y2=1有公共點(diǎn)”,命題q:函數(shù)f(x)=ax2+ax+1沒有零點(diǎn),若命題p∧q為假命題,p∨q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(x-
π
6
).
(1)求函數(shù)f(x)圖象的對(duì)稱軸方程和函數(shù)x(x)的單調(diào)增區(qū)間;
(2)求函數(shù)y=f(x)的圖象與直線y=2的兩個(gè)相鄰交點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=10n-n2,數(shù)列{bn}的每一項(xiàng)都有bn=|an|,求數(shù)列{bn}的前10項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-1)2=2經(jīng)過橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F和上頂點(diǎn)B.
(Ⅰ)求橢圓Γ的方程;
(Ⅱ)過原點(diǎn)O的射線l與橢圓Γ在第一象限的交點(diǎn)為Q,與圓C的交點(diǎn)為P,M為OP的中點(diǎn),求
OM
OQ
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和記為Sn,已知a1=1,Sn=
n
n+2
an+1
,(n=1,2,3,…)
(Ⅰ)求數(shù)列{Sn}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn=S1+S2+S3+…+Sn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<a≤
1
3
,若f(x)=ax2-2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)-N(a).
(1)求函數(shù)g(a)的表達(dá)式;
(2)判斷函數(shù)g(a)的單調(diào)性(只需說明,不用證明),并求g(a)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案