14.近年來(lái),霧霾日趨嚴(yán)重,我們的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點(diǎn)問題.某空氣凈化器制造廠,決定投入生產(chǎn)某型號(hào)的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)該型號(hào)空氣凈化器x(百臺(tái)),其總成本為P(x)(萬(wàn)元),其中固定成本為12萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為10萬(wàn)元(總成本=固定成本+生產(chǎn)成本).銷售收入Q(x)(萬(wàn)元)滿足Q(x)=$\left\{\begin{array}{l}{-0.5{x}^{2}+22x(0≤x≤16)}\\{224(x>16)}\end{array}\right.$,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)以述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問題:
(1)求利潤(rùn)函數(shù)y=f(x)的解析式(利潤(rùn)=銷售收入-總成本);
(2)工廠生產(chǎn)多少百臺(tái)產(chǎn)品時(shí),可使利潤(rùn)最多?

分析 (1)先求得P(x),再由f(x)=Q(x)-P(x),由分段函數(shù)式可得所求;
(2)分別求出各段的最值,注意運(yùn)用一次函數(shù)和二次函數(shù)的最值求法,即可得到.

解答 解:(1)由題意得P(x)=12+10x,…(1分)
則f(x)=Q(x)-P(x)=$\left\{\begin{array}{l}{-0.5{x}^{2}+22x-12-10x,0≤x≤16}\\{224-12-10x,x>16}\end{array}\right.$
即為f(x)=$\left\{\begin{array}{l}{-0.5{x}^{2}+12x-12,0≤x≤16}\\{212-10x,x>16}\end{array}\right.$…(4分)
(2)當(dāng)x>16時(shí),函數(shù)f(x)遞減,即有f(x)<f(16)=212-160=52萬(wàn)元 …6 分
當(dāng)0≤x≤16時(shí),函數(shù)f(x)=-0.5x2+12x-12
=-0.5(x-12)2+60,
當(dāng)x=12時(shí),f(x)有最大值60萬(wàn)元.…9 分
所以當(dāng)工廠生產(chǎn)12百臺(tái)時(shí),可使利潤(rùn)最大為60萬(wàn)元.…10 分

點(diǎn)評(píng) 本題考查函數(shù)模型在實(shí)際問題中的應(yīng)用,考查函數(shù)的最值問題,正確求出分段函數(shù)式,求出各段的最值是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱錐E-ABCD中,底面ABCD為梯形,AB∥CD,且AB=2CD,側(cè)面ADE為等邊三角形,側(cè)面ABE為等腰直角三角形,且角A為直角,且平面ABE⊥平面ADE.
(Ⅰ)證明:平面ABE⊥平面BCE;
(Ⅱ)求平面ADE和平面BCE所成二面角(銳角)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=2sin(2ωx+$\frac{π}{6}$)+1(其中0<ω<1),若點(diǎn)(-$\frac{π}{6}$,1)是函數(shù)f(x)圖象的一個(gè)對(duì)稱中心.
(Ⅰ)試求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-π,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若對(duì)函數(shù)y=f(x)定義域內(nèi)的每一個(gè)值x1,都存在唯一的值x2,使得f(x1)f(x2)=1成立,則稱此函數(shù)為“黃金函數(shù)”,給出下列四個(gè)函數(shù):①y=$\frac{1}{x}$;②y=log2x;③y=($\frac{1}{2}$)x;④y=x2,其中是“黃金函數(shù)”的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)全集U={1,2,3,4,5,6},集合A={1,3,5},B={4,5,6},則(∁UA)∩B=( 。
A.{2}B.{2,4}C.{4,6}D.{2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若函數(shù)y=f(x)(x∈R)滿足f(x-2)=f(x),且x∈[-1,1],f(x)=1-x2,函數(shù)g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}\right.$則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-4,5]內(nèi)零點(diǎn)的個(gè)數(shù)為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知冪函數(shù)f(x)的圖象過(guò)點(diǎn)(2,16),則f($\sqrt{3}$)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)直線l經(jīng)過(guò)點(diǎn)M和點(diǎn)N(-1,1),且點(diǎn)M是直線x-y-1=0被直線l1:x+2y-1=0,l2:x+2y-3=0所截得線段的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,三棱錐P-ABC中,平面PAC⊥平面ABC,AB⊥BC,點(diǎn)D,E在線段AC上,且AD=DE=EC=2,PD=PC=4,點(diǎn)F在線段AB上,且EF∥平面PBC.
(1)證明:EF∥BC
(2)證明:AB⊥平面PEF
(3)若四棱錐P-DFBC的體積為7,求線段BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案