A. | 6 | B. | 7 | C. | 8 | D. | 9 |
分析 由函數(shù)y=f(x)(x∈R)滿足f(x-2)=f(x),可知函數(shù)y=f(x)(x∈R)是周期為2的函數(shù),進(jìn)而根據(jù)x∈[-1,1]時(shí),f(x)=1-x2,函數(shù)g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}\right.$的圖象得到交點(diǎn)個(gè)數(shù).
解答 解:因?yàn)閒(x-2)=f(x),所以函數(shù)y=f(x)(x∈R)是周期為2函數(shù).
因?yàn)閤∈[-1,1]時(shí),f(x)=1-x2,所以作出它的圖象,
利用函數(shù)y=f(x)(x∈R)是周期為2函數(shù),可作出y=f(x)在區(qū)間[-4,5]上的圖象,如圖所示
再作出函數(shù)g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}\right.$的圖象,
容易得出到交點(diǎn)為7個(gè).
故選:B.
點(diǎn)評 本題的考點(diǎn)是函數(shù)零點(diǎn)與方程根的關(guān)系,主要考查函數(shù)零點(diǎn)的定義,關(guān)鍵是正確作出函數(shù)圖象,注意掌握周期函數(shù)的一些常見結(jié)論:若f(x+a)=f(x),則周期為a;若f(x+a)=-f(x),則周期為2a;若f(x+a)=$\frac{1}{f(x)}$,則周期為2a.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}-\frac{y^2}{16}=1$ | C. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ | D. | $\frac{x^2}{3}-\frac{y^2}{4}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com