分析 (1)由EF∥平面PBC,BC?平面PBC,BC?平面ABC,能證明EF∥BC.
(2)由等腰三角形的性質(zhì)可證PE⊥AC,可證PE⊥AB.又EF∥BC,可證AB⊥EF,從而AB與平面PEF內(nèi)兩條相交直線PE,EF都垂直,可證AB⊥平面PEF.
(3)設(shè)BC=x,可求AB,S△ABC,由EF∥BC可得△AFE∽△ABC,求得S△AFE=$\frac{4}{9}$S△ABC,由AD=$\frac{1}{2}$AE,可求S△AFD,從而求得四邊形DFBC的面積,由(2)知PE為四棱錐P-DFBC的高,求得PE,由體積VP-DFBC=$\frac{1}{3}$SDFBC•PE=7,即可解得線段BC的長
解答 證明:(1)∵EF∥平面PBC,BC?平面PBC,
∴EF與BC不相交,
∵E在線段AC上,點F在線段AB上,
∴EF?平面ABC,又BC?平面ABC,
∴EF∥BC.
(2)如圖,由DE=EC,PD=PC知,E為等腰△PDC中DC邊的中點,故PE⊥AC,
又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE?平面PAC,PE⊥AC,
所以PE⊥平面ABC,從而PE⊥AB.
因為AB⊥BC,EF∥BC,故AB⊥EF,
從而AB與平面PEF內(nèi)兩條相交直線PE,EF都垂直,
所以AB⊥平面PEF.
解:(3)設(shè)BC=x,則在直角△ABC中,AB=$\sqrt{A{C}^{2}-B{C}^{2}}$=$\sqrt{36-{x}^{2}}$,
從而S△ABC=$\frac{1}{2}$AB•BC=$\frac{1}{2}$x$\sqrt{36-{x}^{2}}$,
由EF∥BC知$\frac{AF}{AB}$=$\frac{AE}{AC}$=$\frac{2}{3}$,得△AFE∽△ABC,
故$\frac{{S}_{△AFE}}{{S}_{△ABC}}$=($\frac{2}{3}$)2=$\frac{4}{9}$,即S△AFE=$\frac{4}{9}$S△ABC,
由AD=$\frac{1}{2}$AE,S△AFD=$\frac{1}{2}$S△AFE=$\frac{1}{2}•\frac{4}{9}{S}_{△ABC}$=$\frac{1}{9}×\sqrt{36-{x}^{2}}$,
從而四邊形DFBC的面積為:SDFBC=S△ABC-SAFD=$\frac{1}{2}$×$\sqrt{36-{x}^{2}}-\frac{1}{9}×\sqrt{36-{x}^{2}}$=$\frac{7}{18}$x$\sqrt{36-{x}^{2}}$.
由(2)知,PE⊥平面ABC,所以PE為四棱錐P-DFBC的高.
在直角△PEC中,PE=$\sqrt{P{C}^{2}-E{C}^{2}}$=$\sqrt{16-4}$=2$\sqrt{3}$,
故體積VP-DFBC=$\frac{1}{3}$SDFBC•PE=$\frac{1}{3}•\frac{7}{18}$x$\sqrt{36-{x}^{2}}$$•2\sqrt{3}$=7,
故得x4-36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3$\sqrt{3}$.
所以:BC=3或BC=3$\sqrt{3}$.
點評 本題主要考查了直線與平面垂直的判定,棱柱、棱錐、棱臺的體積的求法,考查了空間想象能力和推理論證能力,考查了轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 最大值為2 | B. | 圖象關(guān)于點($\frac{π}{3}$,0)對稱 | ||
C. | 圖象關(guān)于直線x=-$\frac{π}{3}$對稱 | D. | 在(0,$\frac{π}{4}$)上為增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2016 | B. | 2017 | C. | 4032 | D. | 4034 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com