15.已知cosα=$\frac{1}{2}$,求sinα,tanα的值.

分析 由已知可得α為第一象限,或第四象限,分類討論,利用同角三角函數(shù)基本關(guān)系式即可計(jì)算得解.

解答 解:∵cosα=$\frac{1}{2}$,
∴α為第一象限,或第四象限,
∴當(dāng)α為一象限時(shí),sinα=$\frac{{\sqrt{3}}}{2}$,tanα=$\sqrt{3}$,
當(dāng)α為四象限時(shí),sinα=-$\frac{{\sqrt{3}}}{2}$,tanα=-$\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了分類討論思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知i是虛數(shù)單位,復(fù)數(shù)z滿足$\frac{1}{1-z}$=i,則復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)位于復(fù)平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.(1)人的年齡與他(她)擁有的財(cái)富之間的關(guān)系;
(2)曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間的關(guān)系;
(3)蘋果的產(chǎn)量與氣候之間的關(guān)系;
(4)森林中的同一種樹木,其斷面直徑與高度之間的關(guān)系;
(5)學(xué)生與他(她)的學(xué)號(hào)之間的關(guān)系,
其中有相關(guān)關(guān)系的是(1)(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=sin2x-$\sqrt{3}$cos2x
(1)求函數(shù)的最小正周期及函數(shù)圖象的對(duì)稱中心;
(2)若不等式-2<f(x)-m<2在x∈[$\frac{π}{4},\frac{π}{2}$]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.化簡(jiǎn):
(1)sin(-1200°)cos1290°+cos(-1020°)sin(-1050°)+tan945°;
(2)$\frac{{\sqrt{1-2sin40°cos40°}}}{{cos40°-\sqrt{1-{{sin}^2}50°}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{3x+7}{x+2}$,求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,a=3,且(3+b)(sinA-sinB)=(c-b)sinC,則△ABC面積的最大值為( 。
A.$\sqrt{3}$B.3$\sqrt{3}$C.$\frac{5}{4}$$\sqrt{3}$D.$\frac{9}{4}$$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知z=xy+exy,求$\frac{∂z}{∂x}$,$\frac{∂z}{∂y}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合A={3,4,5},集合B={a2,5,|b|},且A=B,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案