A. | (-3,1)∪(3,+∞) | B. | (-3,1)∪(2,+∞) | C. | (-1,1)∪(3,+∞) | D. | (-∞,-1)∪(1,3) |
分析 求出函數(shù)值,利用分段函數(shù)求解不等式的解集即可.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{x}^{2}-4x+6,x≥0\\ x+6,x<0\end{array}\right.$,則f(1)=3,
不等式f(x)>f(1)等價于:$\left\{\begin{array}{l}x≥0\\{x}^{2}-4x+6>3\end{array}\right.$或$\left\{\begin{array}{l}x<0\\ x+6>3\end{array}\right.$,
解得:x∈(-3,1)∪(3,+∞).
故選:A.
點評 本題考查分段函數(shù)的應用,不等式組的解法,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
收入x(萬元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y(萬元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
A. | 11.4萬元 | B. | 11.8萬元 | C. | 12.0萬元 | D. | 12.2萬元 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2016-2017學年安徽六安一中高二上文周末檢測三數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)證明:數(shù)列是遞減數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 27 | B. | 81 | C. | 243 | D. | 729 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com