15.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2n=4(a1+a3+…+a2n-1),a1•a2•a3=27,則a6=( 。
A.27B.81C.243D.729

分析 通過等比中項(xiàng)的性質(zhì)可得${{a}_{2}}^{3}$=27,即a2=3,利用S2=4a1可得公比q=3,計(jì)算即可.

解答 解:∵數(shù)列{an}為等比數(shù)列,
∴a1•a2•a3=${{a}_{2}}^{3}$=27,∴a2=3,
又S2=4a1,∴a1+a2=4a1,
∴3a1=a2,即公比q=3,首項(xiàng)a1=1,
∴a6=${a}_{1}•{q}^{6-1}$=1×35=35=243,
故選:C.

點(diǎn)評(píng) 本題考查求數(shù)列的通項(xiàng),利用等比中項(xiàng)的性質(zhì)是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某銀行規(guī)定,一張銀行卡若在一天內(nèi)出現(xiàn)3次密碼嘗試錯(cuò)誤,該銀行卡將被鎖定,小王到銀行取錢時(shí),發(fā)現(xiàn)自己忘記了銀行卡的密碼,但是可以確定該銀行卡的正確密碼是他常用的6個(gè)密碼之一,小王決定從中不重復(fù)地隨機(jī)選擇1個(gè)進(jìn)行嘗試.若密碼正確,則結(jié)束嘗試;否則繼續(xù)嘗試,直至該銀行卡被鎖定.
(1)求當(dāng)天小王的該銀行卡被鎖定的概率;
(2)設(shè)當(dāng)天小王用該銀行卡嘗試密碼次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=-(x-$\frac{1}{x}$)cosx(-π≤x≤π且x≠0)的圖象可能為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x}^{2}-4x+6,x≥0\\ x+6,x<0\end{array}\right.$則不等式f(x)>f(1)的解集是( 。
A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞)D.(-∞,-1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知:等差數(shù)列{an}中,a3+a4=15,a2a5=54,公差d<0,前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求$\frac{{S}_{n}-{a}_{n}}{n}$的最大值及相應(yīng)的n的值;
(3)求數(shù)列{|an|}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知△ABC的面積為4,點(diǎn)E、F分別在邊AB、AC上,且$\overrightarrow{EF}$=$\frac{2}{3}$$\overrightarrow{BC}$,若P為線段EF上一動(dòng)點(diǎn),則$\overrightarrow{PB}$•$\overrightarrow{PC}$+$\overrightarrow{BC}$2的最小值為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{3\sqrt{6}}{2}$C.$\frac{8\sqrt{3}}{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知△ABC的內(nèi)角∠A、∠B、∠C所對(duì)的邊為a、b、c,則“ab>c2”是“∠C<$\frac{π}{3}$”的充分非必要條件.(填“充分非必要”、“必要非充分”、“充要”、“既不充分又不必要”中的一種).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知冪函數(shù)y=f(x)的圖象過點(diǎn)A(8,2),則f(log2$\frac{5}{8}$+log${\;}_{\frac{1}{2}}$160)等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1作圓x2+y2=a2的切線分別交雙曲線的左、右兩支于點(diǎn)B、C,且|BC|=|CF2|,則雙曲線的離心率為( 。
A.$\sqrt{2\sqrt{5}+3}$B.$\sqrt{2\sqrt{5}-3}$C.$\sqrt{5+2\sqrt{3}}$D.$\sqrt{5-2\sqrt{3}}$

查看答案和解析>>

同步練習(xí)冊答案