【題目】如圖,在四棱錐S-ABCD中,四邊形ABCD菱形,,平面平面 ABCD, .E,F 分別是線段 SC,AB 上的一點(diǎn), .
(1)求證:平面SAD;
(2)求平面DEF與平面SBC所成銳二面角的正弦值.
【答案】(1)證明見解析
(2)
【解析】
(1)先證明平行四邊形AGEF,得到AG∥EF,再證明EF∥平面SAD;
(2)以OA,OB,OS所在直線為x,y,z軸,建立空間直角坐標(biāo)系如圖,求出平面DEF的法向量和平面SBC的一個(gè)法向量,利用向量的夾角公式求出二面角的余弦值,從而求出平面DEF與平面SBC所成銳二面角的正弦值.
(1)過(guò)點(diǎn)E作EG∥DC,如圖,連接AG,因?yàn)?/span>,所以,
故EG∥CD,EG,由,AF,
因?yàn)榱庑?/span>ABCD,所以EG∥AF,EG=AF,
故平行四邊形AGEF,所以AG∥EF,
又平面,平面,所以平面.
(2)取AD中點(diǎn)O,等腰三角形SAD,故SO⊥AD,連接OB,
菱形ABCD,∠ADC=120°,所以OB⊥OA,
又平面SAD⊥平面ABCD所以SO⊥平面ABCD,
以OA,OB,OS所在直線為x,y,z軸,建立空間直角坐標(biāo)系如圖,
因?yàn)?/span>SA=SD=3,所以AD=AB=CD=6,SO=3,
∠ADC=120°,所以AF=2,OB,AO=OD=3,
所以A(3,0,0),D(﹣3,0,0),S(0,0,3),
F(2,,0),B(0,3,0),C(﹣6,3,0),
又(﹣2,,﹣1),得E(﹣2,,2),
所以,,,,
設(shè)平面DEF的一個(gè)法向量為,
由,得,故
設(shè)平面SBC的一個(gè)法向量為,
由,得,故,
所以,
平面DEF與平面SBC所成銳二面角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系xOy的原點(diǎn)為極坐標(biāo)系的極點(diǎn),x軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,P是上一動(dòng)點(diǎn),,Q的軌跡為.
(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程,
(2)若點(diǎn),直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線的交點(diǎn)為A,B,當(dāng)取最小值時(shí),求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有兩個(gè)零點(diǎn).
(1)求的取值范圍;
(2)記的極值點(diǎn)為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性,并說(shuō)明理由;
(2)已知不等式在上恒成立,求實(shí)數(shù)的最大值;
(3)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:經(jīng)過(guò)點(diǎn),右焦點(diǎn)到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)定義為,兩點(diǎn)所在直線的斜率,若四邊形為橢圓的內(nèi)接四邊形,且,相交于原點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,點(diǎn)是四邊形的中心,關(guān)于直線,下列說(shuō)法正確的是( )
A. B.
C. 平面D. 平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列: 滿足: , 或1().對(duì)任意,都存在,使得.,其中 且兩兩不相等.
(I)若.寫出下列三個(gè)數(shù)列中所有符合題目條件的數(shù)列的序號(hào);
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)記.若,證明: ;
(Ⅲ)若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|x-2|.
(1)求f(x)的最小值m;
(2)若a,b,c均為正實(shí)數(shù),且滿足a+b+c=m,求證:++≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某同學(xué)在素質(zhì)教育基地通過(guò)自己設(shè)計(jì)、選料、制作,打磨出了一個(gè)作品,作品由三根木棒,,組成,三根木棒有相同的端點(diǎn)(粗細(xì)忽略不計(jì)),且四點(diǎn)在同一平面內(nèi),,,木棒可繞點(diǎn)O任意旋轉(zhuǎn),設(shè)BC的中點(diǎn)為D.
(1)當(dāng)時(shí),求OD的長(zhǎng);
(2)當(dāng)木棒OC繞點(diǎn)O任意旋轉(zhuǎn)時(shí),求AD的長(zhǎng)的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com