8.已知F1、F2是雙曲線(xiàn)的兩焦點(diǎn),以線(xiàn)段F1F2為邊作正三角形MF1F2,MF1的中點(diǎn)A在雙曲線(xiàn)上,則雙曲線(xiàn)的離心率是$\sqrt{3}$+1.

分析 利用正三角形以及雙曲線(xiàn)的定義,求得a,b和c的關(guān)系式化簡(jiǎn)整理求得關(guān)于e的方程求得e.

解答 解:由條件知,|F1F2|=2c,|MF1|=c,
∴|MF2|=$\sqrt{3}$c,由雙曲線(xiàn)定義知,|AF2|-|AF1|=2a,
∴$\sqrt{3}$c-c=2a,
∴e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1.
故答案為:$\sqrt{3}$+1.

點(diǎn)評(píng) 本題主要考查了雙曲線(xiàn)的簡(jiǎn)單性質(zhì).考查了學(xué)生對(duì)雙曲線(xiàn)的基礎(chǔ)知識(shí)的把握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.當(dāng)x>-3時(shí),不等式a≤x+$\frac{2}{x+3}$恒成立,則a的取值范圍是2$\sqrt{2}$-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在平面直角坐標(biāo)系中,曲線(xiàn)C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1-cosα}\\{y=sinα}\end{array}\right.$(α位參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立的極坐標(biāo)系中,曲線(xiàn)C2的方程為ρ=2sinθ.
(1)求C1和C2的普通方程;
(2)求C1和C2公共弦的垂直平分線(xiàn)的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an},a1=1,且對(duì)n∈N*,an+1=$\frac{n{a}_{n}+2(n+1)}{n+2}$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{[n-(-1)^{n}]{a}_{n}}$,證明:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=x2,g(x)=x-1,則g[f(x)]=x2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知△ABC是單位圓O的內(nèi)接三角形,AD是圓的直徑,若滿(mǎn)足$\overrightarrow{AB}•\overrightarrow{AD}+\overrightarrow{AC}•\overrightarrow{AD}={\overrightarrow{BC}^2}$,則$|\overrightarrow{BC}|$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知圓C:x2+y2-4x+2y=0與圓C2:x2+y2-2y=0相交于A,B兩點(diǎn).
(1)求過(guò)A,B兩點(diǎn)且圓心在直線(xiàn)2x+y=2上的圓C的方程;
(2)設(shè)P,Q是圓C上兩點(diǎn),且滿(mǎn)足|OP|•|OQ|=1,求坐標(biāo)原點(diǎn)到直線(xiàn)PQ的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知f(x)是偶函數(shù),且x>0時(shí),f(x)=x2+ax,若f(-1)=2,則a=1;f(2)的值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在△ABC中,若($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=$\frac{3}{4}$${\overrightarrow{BC}}^{2}$,則$\frac{tanB}{tanC}$=7.

查看答案和解析>>

同步練習(xí)冊(cè)答案