分析 (1)通過計算出前幾項的值猜想通項公式,利用數(shù)學(xué)歸納法證明即可;
(2)通過(1)可知bn=$\frac{1}{2n+1}$•$\frac{3}{n-(-1)^{n}}$,利用放縮放縮法可知b2n-1+b2n<$\frac{3}{4}$($\frac{1}{n-2}$-$\frac{1}{n-1}$)(n≥3),進而并項相加即得結(jié)論.
解答 (1)解:依題意,a2=$\frac{{a}_{1}+2(1+1)}{1+2}$=$\frac{1+4}{3}$=$\frac{5}{3}$,
a3=$\frac{2{a}_{2}+2(2+1)}{2+2}$=$\frac{2•\frac{5}{3}+6}{4}$=$\frac{7}{3}$,
a4=$\frac{3{a}_{3}+2(3+1)}{3+2}$=$\frac{3•\frac{7}{3}+8}{5}$=3=$\frac{9}{3}$,
猜想:an=$\frac{2n+1}{3}$.
下面用數(shù)學(xué)歸納法來證明:
①當(dāng)n=1時,顯然成立;
②假設(shè)當(dāng)n=k(k≥2)時,有ak=$\frac{2k+1}{3}$,
則ak+1=$\frac{k{a}_{k}+2(k+1)}{k+2}$=$\frac{\frac{k(2k+1)}{3}+2(k+1)}{k+2}$=$\frac{(2k+3)(k+2)}{3(k+2)}$=$\frac{2(k+1)+1}{3}$,
即當(dāng)n=k+1時,命題也成立;
由①、②可知,an=$\frac{2n+1}{3}$;
(2)證明:由(1)可知bn=$\frac{1}{[n-(-1)^{n}]{a}_{n}}$=$\frac{1}{2n+1}$•$\frac{3}{n-(-1)^{n}}$,
∴b1=$\frac{1}{2}$,b2=$\frac{3}{5}$,b3=$\frac{3}{28}$,$_{4}=\frac{1}{9}$,$_{5}=\frac{1}{22}$,$_{6}=\frac{3}{65}$,
∵b2n-1+b2n=$\frac{1}{4n-1}$•$\frac{3}{2n}$+$\frac{1}{4n+1}$•$\frac{3}{2n-1}$
<6($\frac{1}{4n-2}$•$\frac{1}{2n-2}$)
<$\frac{3}{4}$($\frac{1}{n-2}$-$\frac{1}{n-1}$)(n≥3),
∴b1+b2+…+b2n-1+b2n<$\frac{1}{2}$+$\frac{3}{5}$+$\frac{3}{4}$(1-$\frac{1}{n-1}$)<2,
∴b1+b2+…+bn<2.
點評 本題考查數(shù)列的通項及前n項和,考查數(shù)學(xué)歸納法,考查放縮法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=$\frac{1}{16}$ | B. | y=$\frac{1}{16}$ | C. | y=$\frac{1}{32}$ | D. | x=$\frac{1}{32}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com