設數(shù)列的前項和為,
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求數(shù)列的前項和.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)當時,,解得,與已知相符。
時,,
整理得:
,因為,所以
所以數(shù)列是以1為首項,2為公差的等差數(shù)列
所以
(Ⅱ)由(Ⅰ)得
所以

兩式相減得:
所以。
考點:本題主要考查等差數(shù)列的的基礎知識,“錯位相減法”。
點評:中檔題,本題綜合考查等差數(shù)列、等比數(shù)列的基礎知識,本解答從確定通項公式入手,明確了所研究數(shù)列的特征!胺纸M求和法”、“錯位相消法”、“裂項相消法”是高考常?嫉綌(shù)列求和方法。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知首項為的等比數(shù)列的前n項和為, 且成等差數(shù)列.
(Ⅰ) 求數(shù)列的通項公式;
(Ⅱ) 證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列前n項和,且.
(Ⅰ)試求數(shù)列的通項公式;
(Ⅱ)設,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知公差不為零的等差數(shù)列的前四項和為10,且成等比數(shù)列
(1)求通項公式(2)設,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于無窮數(shù)列和函數(shù),若,則稱是數(shù)列的母函數(shù).
(Ⅰ)定義在上的函數(shù)滿足:對任意,都有,且;又數(shù)列滿足:.
求證:(1)是數(shù)列的母函數(shù);
(2)求數(shù)列的前項.
(Ⅱ)已知是數(shù)列的母函數(shù),且.若數(shù)列的前項和為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前n項和為=1,且
(1)求,的值,并求數(shù)列的通項公式;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列中,,用數(shù)學歸納法證明:。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


已知正項數(shù)列的前項和為,且 .
(1)求的值及數(shù)列的通項公式;
(2)求證:;
(3)是否存在非零整數(shù),使不等式
對一切都成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是公比大于1的等比數(shù)列,為數(shù)列的前項和,已知,且構成等差數(shù)列.
(1)求數(shù)列的通項公式;
(2)令,求數(shù)列的前項和.

查看答案和解析>>

同步練習冊答案