【題目】某高中三年級(jí)共有人,其中男生人,女生人,為調(diào)查該年級(jí)學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(Ⅰ)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示).其中樣本數(shù)據(jù)分組區(qū)間為: , , , , , .估計(jì)該年組學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)個(gè)小時(shí)的概率.
(Ⅲ)在樣本數(shù)據(jù)中,有位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)個(gè)小時(shí).請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為“該年級(jí)學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
附:
【答案】(1) (2) (3)有的把握認(rèn)為“該年組學(xué)生的周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”
【解析】試題分析:(Ⅰ)利用分層抽樣的特點(diǎn)(等比例抽樣)進(jìn)行求解;(Ⅱ)利用頻率分布直方圖進(jìn)行求解;(Ⅲ)先利用頻率分布直方圖得到每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,再利用公式求值,利用臨界值表進(jìn)行判定.
試題解析:(Ⅰ),所以應(yīng)收集位女生的樣本數(shù)據(jù)
(II)由頻率分布直方圖得,該年級(jí)學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)個(gè)小時(shí)的概率為.
(Ⅲ)由(Ⅱ)知, 位學(xué)生中有人的每周下均體育運(yùn)動(dòng)時(shí)間超過(guò)小時(shí). 人的每平下均體育運(yùn)動(dòng)時(shí)間小超過(guò)小時(shí),又因?yàn)闃颖緮?shù)據(jù)中有關(guān)于男生的. 是關(guān)于女生.所以每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表如下:
男生 | 女生 | 總計(jì) | |
每周平均體育運(yùn)動(dòng)時(shí)間不超過(guò)小時(shí) | |||
每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)小時(shí) | |||
總計(jì) |
結(jié)合列聯(lián)表可算得.
有的把握認(rèn)為“該年組學(xué)生的周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓的圓心坐標(biāo)為,半徑為2.以極點(diǎn)為原點(diǎn),極軸為的正半軸,取相同的長(zhǎng)度單位建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)求圓的極坐標(biāo)方程;
(2)設(shè)與圓的交點(diǎn)為, 與軸的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐的側(cè)面底面,底面是直角梯形,且, , 是中點(diǎn).
(1)求證: 平面;
(2)若,求直線與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過(guò)點(diǎn),曲線的參考方程為(為參數(shù)).
(1)求曲線上的點(diǎn)到直線的距離的最大值與最小值;
(2)過(guò)點(diǎn)與直線平行的直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處的切線斜率為2.
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)若在上無(wú)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中, 平面,底面為菱形, , 是中點(diǎn), 是的中點(diǎn), 是上的點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)當(dāng)是中點(diǎn),且時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為: (為參數(shù)),兩曲線相交于兩點(diǎn).
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)中, , 分別是, 的中點(diǎn), , 平面,且.
(1)證明: 平面;
(2)若, 為等邊三角形,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),定義(,且為常數(shù)),若,,.以下四個(gè)命題中為真命題的是__________.
①不存在極值;②若的反函數(shù)為,且函數(shù)與函數(shù)有兩個(gè)公共點(diǎn),則;③若在上是減函數(shù),則實(shí)數(shù)的取值范圍是;④若,則在的曲線上存在兩點(diǎn),使得過(guò)這兩點(diǎn)的切線互相垂直.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com