10.已知函數(shù)y=f(x)的圖象關(guān)于直線x=0對稱,且當(dāng)x∈(0,+∞)時,f(x)=log2x,若a=f(-3),$b=f(\frac{1}{4})$,c=f(2),則a,b,c的大小關(guān)系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

分析 根據(jù)函數(shù)的奇偶性和函數(shù)的單調(diào)性即可判斷.

解答 解:函數(shù)y=f(x)的圖象關(guān)于直線x=0對稱,
∴f(-3)=f(3),
∵f(x)=log2x,在x(0,+∞)為增函數(shù),
∴f(3)>f(2)>f($\frac{1}{4}$),
∴a>c>b,
故選:D.

點(diǎn)評 本題考查對數(shù)函數(shù)的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在四面體ABCD中,已知AD⊥BC,BC=2,AD=6,且$\frac{AB}{BD}$=$\frac{AC}{CD}$=2,則四面體ABCD的體積的最大值為$2\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=ax-2,g(x)=loga|x|(其中a>0且a≠1),若f(5)•g(-3)>0,則f(x),g(x)在同一坐標(biāo)系內(nèi)的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某公司設(shè)計如圖所示的環(huán)狀綠化景觀帶,該景觀帶的內(nèi)圈由兩條平行線段(圖中的AB,DC)和兩個半圓構(gòu)成,設(shè)AB=xm,且x≥80.
(1)若內(nèi)圈周長為400m,則x取何值時,矩形ABCD的面積最大?
(2)若景觀帶的內(nèi)圈所圍成區(qū)域的面積為$\frac{22500}{π}$m2,則x取何值時,內(nèi)圈周長最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則$f(\frac{11π}{24})$的值為( 。
A.$-\frac{{\sqrt{6}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{2}}}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn),雙曲線兩漸近線分別為l1,l2,過點(diǎn)F作直線11的垂線,分別交l1l2于A,B兩點(diǎn),若A,B兩點(diǎn)均在x軸的上方且|0A|=3,|OB|=5,則雙曲線的離心率為$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若M為△ABC的重心,O為任意一點(diǎn),$\overrightarrow{OA}$$+\overrightarrow{OB}$$+\overrightarrow{OC}$=n$\overrightarrow{OM}$,則n=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.集合A={x|lnx≥0},B={x|x2<9},則A∩B=( 。
A.(1,3)B.[1,3)C.[1,+∞)D.[e,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知等比數(shù)列{an}的各項均為正數(shù),且滿足:a1a7=4,則數(shù)列{log2an}的前7項之和為7.

查看答案和解析>>

同步練習(xí)冊答案