14.在△ABC中,BC=8,BC邊上的高為6,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范圍為[20,+∞).

分析 建立平面直角坐標(biāo)系,代入坐標(biāo)計算數(shù)量積,求最值.

解答 解:以BC中點為原點,以BC所在直線為x軸建立平面直角坐標(biāo)系如圖,則B(-4,0),C(4,0),設(shè)A(a,6).
∴$\overrightarrow{AB}$=(-4-a,-6),$\overrightarrow{AC}$=(4-a,-6),
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=(-4-a)(4-a)+36=a2+20≥20,
∴則$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范圍為[20,+∞).
故答案為[20,+∞).

點評 本題考查了平面向量在幾何中的應(yīng)用,建立平面直角坐標(biāo)系是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.“a>b”是“a+c>b+c”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c(a<c),且$\frac{acosB+bcosA}{c}$=2cosC.
(1)若sinA=$\frac{\sqrt{10}}{10}$,求cosB的值;
(2)若S△ABC=2$\sqrt{3}$,a=4,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.北京時間2015年07月31日17時57分,在馬來西亞首都吉隆坡舉行的國際奧委會第128次全會上,國際奧委會主席托馬斯.巴赫宣布北京贏得2022年第二十四屆冬季奧林匹克運動會(以下簡稱冬奧會)的舉辦權(quán),華夏大地一片歡騰,某高中為了調(diào)查學(xué)生對冬奧會的了解惰況,組織了“冬奧會知多少”的知識問卷測試,從該校2400名學(xué)生中隨機抽取12人進行知識問卷測試,測試成績(百分制)以莖葉圖形式表示(如圖所示),根據(jù)主辦方標(biāo)準(zhǔn),測試成績低于80分的為“非體育迷”,不低于80分的為“體育迷”,
(1)將頻率視為概率,根據(jù)樣本估計總體的思想,若從該校學(xué)生中任選4人進行深度訪談,求恰好有1人是“體育迷”的概率;
(2)從抽取的12名學(xué)生中隨機選取3人,記ξ表示“體育迷”的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點A(λ+1,μ-1,3),B(2λ,μ,λ-2μ),C(λ+3,μ-3,9)三點共線,則實數(shù)λ+μ=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.北緯45°圈上有A,B兩地,A在東經(jīng)120°,B在西經(jīng)150°,設(shè)地球的半徑為R,則A、B兩地的球面距離是$\frac{πR}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)滿足f(x+1)+f(1-x)=0,f(x+2)-f(2-x)=0且f($\frac{2}{3}$)=1,則f($\frac{1000}{3}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線l1:y=kx,l2:y=2x+3,若兩直線垂直,則k=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)是定義在(-∞,-1)∪(1,+∞)上的奇函數(shù),當(dāng)x>1時,f(x)=$\frac{x}{x-1}$
(1)當(dāng)x<-1時,求f(x)的解析式;
(2)求函數(shù)$f(\frac{1}{x})$的定義域;
(3)證明f(x)在(1,+∞)上為減函數(shù).

查看答案和解析>>

同步練習(xí)冊答案