3.已知直線l1:y=kx,l2:y=2x+3,若兩直線垂直,則k=-$\frac{1}{2}$.

分析 根據(jù)直線的垂直關(guān)系求出k的值即可.

解答 解:直線l1:y=kx,l2:y=2x+3,
若兩直線垂直,則2k=-1,解得:k=-$\frac{1}{2}$,
故答案為:-$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了直線的垂直關(guān)系,掌握k1•k2=-1是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)的圖象與g(x)=($\frac{1}{2}$)x的圖象關(guān)于直線y=x對(duì)稱,那么f(2x-x2)的值域是( 。
A.RB.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,BC=8,BC邊上的高為6,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范圍為[20,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,一海島D,海島離岸邊最近點(diǎn)B的距離是150km,在岸邊距點(diǎn)B300km的點(diǎn)A處有一批物資需運(yùn)往海島D,為了盡快送達(dá)海島,A與B之間有一鐵路,現(xiàn)用海陸聯(lián)運(yùn)的方式,火車的時(shí)速為50km,船的時(shí)速為30km,試在岸邊選一點(diǎn)C,問選在何處可使運(yùn)輸時(shí)間最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知sina=$\frac{4\sqrt{3}}{7}$,cos(α+β)=-$\frac{11}{14}$,0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$.求cosβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=x4+2x2-1的值域[-1,+∞);函數(shù)y=$\frac{1}{{x}^{2}+1}$的值域(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖給出的是計(jì)算$1+\frac{1}{3}+\frac{1}{5}+…+\frac{1}{2011}$的值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A.i≤2011B.i>2011C.i≤1005D.i>1005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若直線l1:mx+y-1=0與直線l2:x+(m-1)y+2=0垂直,則實(shí)數(shù)m=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上有最小值1和最大值4,設(shè)f(x)=$\frac{g(x)}{x}$.
(1)求a,b的值;
(2)若不等式f(x)-kx≥0在區(qū)間[$\frac{1}{2}$,2]上有解.求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案